These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 21560165)

  • 1. Multibody coarse-grained potentials for native structure recognition and quality assessment of protein models.
    Gniewek P; Leelananda SP; Kolinski A; Jernigan RL; Kloczkowski A
    Proteins; 2011 Jun; 79(6):1923-9. PubMed ID: 21560165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free energies for coarse-grained proteins by integrating multibody statistical contact potentials with entropies from elastic network models.
    Zimmermann MT; Leelananda SP; Gniewek P; Feng Y; Jernigan RL; Kloczkowski A
    J Struct Funct Genomics; 2011 Jul; 12(2):137-47. PubMed ID: 21674234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel nonlinear knowledge-based mean force potentials based on machine learning.
    Dong Q; Zhou S
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(2):476-86. PubMed ID: 20820079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An accurate, residue-level, pair potential of mean force for folding and binding based on the distance-scaled, ideal-gas reference state.
    Zhang C; Liu S; Zhou H; Zhou Y
    Protein Sci; 2004 Feb; 13(2):400-11. PubMed ID: 14739325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ROTAS: a rotamer-dependent, atomic statistical potential for assessment and prediction of protein structures.
    Park J; Saitou K
    BMC Bioinformatics; 2014 Sep; 15(1):307. PubMed ID: 25236673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous anisotropic representation of coarse-grained potentials for proteins by spherical harmonics synthesis.
    Buchete NV; Straub JE; Thirumalai D
    J Mol Graph Model; 2004 May; 22(5):441-50. PubMed ID: 15099839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Four-body contact potentials derived from two protein datasets to discriminate native structures from decoys.
    Feng Y; Kloczkowski A; Jernigan RL
    Proteins; 2007 Jul; 68(1):57-66. PubMed ID: 17393455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ICOSA: A Distance-Dependent, Orientation-Specific Coarse-Grained Contact Potential for Protein Structure Modeling.
    Elhefnawy W; Chen L; Han Y; Li Y
    J Mol Biol; 2015 Jul; 427(15):2562-2576. PubMed ID: 26055539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein structure refinement by optimization.
    Carlsen M; Røgen P
    Proteins; 2015 Sep; 83(9):1616-24. PubMed ID: 26095680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A reduced protein model with accurate native-structure identification ability.
    Betancourt MR
    Proteins; 2003 Dec; 53(4):889-907. PubMed ID: 14635131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A distance-dependent atomic knowledge-based potential for improved protein structure selection.
    Lu H; Skolnick J
    Proteins; 2001 Aug; 44(3):223-32. PubMed ID: 11455595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DECK: Distance and environment-dependent, coarse-grained, knowledge-based potentials for protein-protein docking.
    Liu S; Vakser IA
    BMC Bioinformatics; 2011 Jul; 12():280. PubMed ID: 21745398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissecting contact potentials for proteins: relative contributions of individual amino acids.
    Buchete NV; Straub JE; Thirumalai D
    Proteins; 2008 Jan; 70(1):119-30. PubMed ID: 17640067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scoring protein interaction decoys using exposed residues (SPIDER): a novel multibody interaction scoring function based on frequent geometric patterns of interfacial residues.
    Khashan R; Zheng W; Tropsha A
    Proteins; 2012 Aug; 80(9):2207-17. PubMed ID: 22581643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Explicit orientation dependence in empirical potentials and its significance to side-chain modeling.
    Ma J
    Acc Chem Res; 2009 Aug; 42(8):1087-96. PubMed ID: 19445451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple Calpha-SC potential with higher accuracy for protein fold recognition.
    Gu J; Li H; Jiang H; Wang X
    Biochem Biophys Res Commun; 2009 Feb; 379(2):610-5. PubMed ID: 19121621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Template-Guided Protein Structure Prediction and Refinement Using Optimized Folding Landscape Force Fields.
    Chen M; Lin X; Lu W; Schafer NP; Onuchic JN; Wolynes PG
    J Chem Theory Comput; 2018 Nov; 14(11):6102-6116. PubMed ID: 30240202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective harmonic potentials: insights into the internal cooperativity and sequence-specificity of protein dynamics.
    Dehouck Y; Mikhailov AS
    PLoS Comput Biol; 2013; 9(8):e1003209. PubMed ID: 24009495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models.
    Stovgaard K; Andreetta C; Ferkinghoff-Borg J; Hamelryck T
    BMC Bioinformatics; 2010 Aug; 11():429. PubMed ID: 20718956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A coarse-grained protein force field for folding and structure prediction.
    Maupetit J; Tuffery P; Derreumaux P
    Proteins; 2007 Nov; 69(2):394-408. PubMed ID: 17600832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.