These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
434 related articles for article (PubMed ID: 2156019)
1. Dopamine induces light-adaptive retinomotor movements in bullfrog cones via D2 receptors and in retinal pigment epithelium via D1 receptors. Dearry A; Edelman JL; Miller S; Burnside B J Neurochem; 1990 Apr; 54(4):1367-78. PubMed ID: 2156019 [TBL] [Abstract][Full Text] [Related]
2. Dopaminergic regulation of cone retinomotor movement in isolated teleost retinas: I. Induction of cone contraction is mediated by D2 receptors. Dearry A; Burnside B J Neurochem; 1986 Apr; 46(4):1006-21. PubMed ID: 2869104 [TBL] [Abstract][Full Text] [Related]
3. Dopaminergic regulation of cone retinomotor movement in isolated teleost retinas: II. Modulation by gamma-aminobutyric acid and serotonin. Dearry A; Burnside B J Neurochem; 1986 Apr; 46(4):1022-31. PubMed ID: 3950617 [TBL] [Abstract][Full Text] [Related]
4. Prostaglandins E1, E2, and D2 induce dark-adaptive retinomotor movements in teleost retinal cones and RPE. Cavallaro B; Burnside B Invest Ophthalmol Vis Sci; 1988 Jun; 29(6):882-91. PubMed ID: 3131263 [TBL] [Abstract][Full Text] [Related]
5. Dopamine inhibits forskolin- and 3-isobutyl-1-methylxanthine-induced dark-adaptive retinomotor movements in isolated teleost retinas. Dearry A; Burnside B J Neurochem; 1985 Jun; 44(6):1753-63. PubMed ID: 2580951 [TBL] [Abstract][Full Text] [Related]
6. Light-induced dopamine release from teleost retinas acts as a light-adaptive signal to the retinal pigment epithelium. Dearry A; Burnside B J Neurochem; 1989 Sep; 53(3):870-8. PubMed ID: 2547905 [TBL] [Abstract][Full Text] [Related]
7. Stimulation of distinct D2 dopaminergic and alpha 2-adrenergic receptors induces light-adaptive pigment dispersion in teleost retinal pigment epithelium. Dearry A; Burnside B J Neurochem; 1988 Nov; 51(5):1516-23. PubMed ID: 2844995 [TBL] [Abstract][Full Text] [Related]
8. Effects of circadian rhythm and cAMP on retinomotor movements in the green sunfish, Lepomis cyanellus. Burnside B; Ackland N Invest Ophthalmol Vis Sci; 1984 May; 25(5):539-45. PubMed ID: 6325366 [TBL] [Abstract][Full Text] [Related]
9. Retinomotor pigment migration in the teleost retinal pigment epithelium. I. Roles for actin and microtubules in pigment granule transport and cone movement. Burnside B; Adler R; O'Connor P Invest Ophthalmol Vis Sci; 1983 Jan; 24(1):1-15. PubMed ID: 6826305 [TBL] [Abstract][Full Text] [Related]
10. Induction of dark-adaptive retinomotor movement (cell elongation) in teleost retinal cones by cyclic adenosine 3','5-monophosphate. Burnside B; Evans M; Fletcher RT; Chader GJ J Gen Physiol; 1982 May; 79(5):759-74. PubMed ID: 6284859 [TBL] [Abstract][Full Text] [Related]
11. Retinomotor pigment migration in the teleost retinal pigment epithelium. II. Cyclic-3',5'-adenosine monophosphate induction of dark-adaptive movement in vitro. Burnside B; Basinger S Invest Ophthalmol Vis Sci; 1983 Jan; 24(1):16-23. PubMed ID: 6186630 [TBL] [Abstract][Full Text] [Related]
12. The effect of dopamine depletion on light-evoked and circadian retinomotor movements in the teleost retina. Douglas RH; Wagner HJ; Zaunreiter M; Behrens UD; Djamgoz MB Vis Neurosci; 1992; 9(3-4):335-43. PubMed ID: 1390391 [TBL] [Abstract][Full Text] [Related]
13. Light-induced photoreceptor shedding in teleost retina blocked by dibutyryl cyclic AMP. Eckmiller MS; Burnside B Invest Ophthalmol Vis Sci; 1983 Sep; 24(9):1328-32. PubMed ID: 6309697 [TBL] [Abstract][Full Text] [Related]
14. Effects of extracellular Ca++, K+, and Na+ on cone and retinal pigment epithelium retinomotor movements in isolated teleost retinas. Dearry A; Burnside B J Gen Physiol; 1984 Apr; 83(4):589-611. PubMed ID: 6202826 [TBL] [Abstract][Full Text] [Related]
15. Retinomotor movements in isolated teleost retinal cone inner-outer segment preparations (CIS-COS): effects of light, dark and dopamine. Burnside B; Wang E; Pagh-Roehl K; Rey H Exp Eye Res; 1993 Dec; 57(6):709-22. PubMed ID: 8150023 [TBL] [Abstract][Full Text] [Related]
16. Effects of cyclic adenosine 3',5'-monophosphate on photoreceptor disc shedding and retinomotor movement. Inhibition of rod shedding and stimulation of cone elongation. Besharse JC; Dunis DA; Burnside B J Gen Physiol; 1982 May; 79(5):775-90. PubMed ID: 6284860 [TBL] [Abstract][Full Text] [Related]
17. Circadian regulation of teleost retinal cone movements in vitro. McCormack CA; McDonnell MT J Gen Physiol; 1994 Mar; 103(3):487-99. PubMed ID: 8195784 [TBL] [Abstract][Full Text] [Related]
18. A role for endogenous dopamine in circadian regulation of retinal cone movement. McCormack CA; Burnside B Exp Eye Res; 1992 Sep; 55(3):511-20. PubMed ID: 1426081 [TBL] [Abstract][Full Text] [Related]
19. Circadian regulation of retinomotor movements. I. Interaction of melatonin and dopamine in the control of cone length. Pierce ME; Besharse JC J Gen Physiol; 1985 Nov; 86(5):671-89. PubMed ID: 2999294 [TBL] [Abstract][Full Text] [Related]
20. Pigment granule migration in isolated cells of the teleost retinal pigment epithelium. Bruenner U; Burnside B Invest Ophthalmol Vis Sci; 1986 Nov; 27(11):1634-43. PubMed ID: 3021648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]