These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 21560671)

  • 1. Hydroclimatic variability drives episodic expansion of a floating peat mat in a North American kettlehole basin.
    Ireland AW; Booth RK
    Ecology; 2011 Jan; 92(1):11-8. PubMed ID: 21560671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecosystem state shifts during long-term development of an Amazonian peatland.
    Swindles GT; Morris PJ; Whitney B; Galloway JM; Gałka M; Gallego-Sala A; Macumber AL; Mullan D; Smith MW; Amesbury MJ; Roland TP; Sanei H; Patterson RT; Sanderson N; Parry L; Charman DJ; Lopez O; Valderamma E; Watson EJ; Ivanovic RF; Valdes PJ; Turner TE; Lähteenoja O
    Glob Chang Biol; 2018 Feb; 24(2):738-757. PubMed ID: 29055083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The development of Hani peatland in the Changbai mountains (NE China) and its response to the variations of the East Asian summer monsoon.
    Zhang M; Bu Z; Jiang M; Wang S; Liu S; Chen X; Hao J; Liao W
    Sci Total Environ; 2019 Nov; 692():818-832. PubMed ID: 31539988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and drought events.
    Heijmans MM; van der Knaap YA; Holmgren M; Limpens J
    Glob Chang Biol; 2013 Jul; 19(7):2240-50. PubMed ID: 23526779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroclimatic and cultural instability in northeastern North America during the last millennium.
    Stager JC; Wiltse B; Cumming BF; Messner TC; Robtoy J; Cushing S
    PLoS One; 2021; 16(3):e0248060. PubMed ID: 33770105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tropical Peat and Peatland Development in the Floodplains of the Greater Pamba Basin, South-Western India during the Holocene.
    Kumaran NK; Padmalal D; Limaye RB; S VM; Jennerjahn T; Gamre PG
    PLoS One; 2016; 11(5):e0154297. PubMed ID: 27163658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-decadal drought and amplified moisture variability drove rapid forest community change in a humid region.
    Booth RK; Jackson ST; Sousa VA; Sullivan ME; Minckley TA; Clifford MJ
    Ecology; 2012 Feb; 93(2):219-26. PubMed ID: 22624302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The elemental enrichments at Dajiuhu Peatland in the Middle Yangtze Valley in response to changes in East Asian monsoon and human activity since 20,000 cal yr BP.
    Liu H; Gu Y; Qin Y; Yu Z; Huang X; Xie S; Zheng M; Zhang Z; Cheng S
    Sci Total Environ; 2021 Feb; 757():143990. PubMed ID: 33316522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroclimatic vulnerability of peat carbon in the central Congo Basin.
    Garcin Y; Schefuß E; Dargie GC; Hawthorne D; Lawson IT; Sebag D; Biddulph GE; Crezee B; Bocko YE; Ifo SA; Mampouya Wenina YE; Mbemba M; Ewango CEN; Emba O; Bola P; Kanyama Tabu J; Tyrrell G; Young DM; Gassier G; Girkin NT; Vane CH; Adatte T; Baird AJ; Boom A; Gulliver P; Morris PJ; Page SE; Sjögersten S; Lewis SL
    Nature; 2022 Dec; 612(7939):277-282. PubMed ID: 36323786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age, extent and carbon storage of the central Congo Basin peatland complex.
    Dargie GC; Lewis SL; Lawson IT; Mitchard ET; Page SE; Bocko YE; Ifo SA
    Nature; 2017 Feb; 542(7639):86-90. PubMed ID: 28077869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor.
    Gumbricht T; Roman-Cuesta RM; Verchot L; Herold M; Wittmann F; Householder E; Herold N; Murdiyarso D
    Glob Chang Biol; 2017 Sep; 23(9):3581-3599. PubMed ID: 28295834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tipping point in plant-fungal interactions under severe drought causes abrupt rise in peatland ecosystem respiration.
    Jassey VEJ; Reczuga MK; Zielińska M; Słowińska S; Robroek BJM; Mariotte P; Seppey CVW; Lara E; Barabach J; Słowiński M; Bragazza L; Chojnicki BH; Lamentowicz M; Mitchell EAD; Buttler A
    Glob Chang Biol; 2018 Mar; 24(3):972-986. PubMed ID: 28991408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 700-year paleoecological record of boreal ecosystem responses to climatic variation from Alaska.
    Tinner W; Bigler C; Gedye S; Gregory-Eaves I; Jones RT; Kaltenrieder P; Krähenbühl U; Hu FS
    Ecology; 2008 Mar; 89(3):729-43. PubMed ID: 18459336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of recent climate change on carbon sequestration in peatland systems.
    Lunt PH; Fyfe RM; Tappin AD
    Sci Total Environ; 2019 Jun; 667():348-358. PubMed ID: 30833238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Persistent high temperature and low precipitation reduce peat carbon accumulation.
    Bragazza L; Buttler A; Robroek BJ; Albrecht R; Zaccone C; Jassey VE; Signarbieux C
    Glob Chang Biol; 2016 Dec; 22(12):4114-4123. PubMed ID: 27081764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog.
    Gill AL; Giasson MA; Yu R; Finzi AC
    Glob Chang Biol; 2017 Dec; 23(12):5398-5411. PubMed ID: 28675635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate-related soil saturation and peatland development may have conditioned surface water brownification at a central European lake for millennia.
    Tichá A; Vondrák D; Moravcová A; Chiverrell R; Kuneš P
    Sci Total Environ; 2023 Feb; 858(Pt 3):159982. PubMed ID: 36356759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroclimate-driven changes in the landscape structure of the terminal lakes and wetlands of the China's Heihe River Basin.
    Xiao S; Xiao H; Peng X; Song X
    Environ Monit Assess; 2015 Jan; 187(1):4091. PubMed ID: 25427825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of gas exchange processes in peat bog ecosystems by means of innovative Raman gas spectroscopy.
    Frosch T; Keiner R; Michalzik B; Fischer B; Popp J
    Anal Chem; 2013 Feb; 85(3):1295-9. PubMed ID: 23320649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drained coastal peatlands: A potential nitrogen source to marine ecosystems under prolonged drought and heavy storm events-A microcosm experiment.
    Wang H; Richardson CJ; Ho M; Flanagan N
    Sci Total Environ; 2016 Oct; 566-567():621-626. PubMed ID: 27236627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.