BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 21560693)

  • 1. Scale-dependent response diversity of seabirds to prey in the North Sea.
    Fauchald P; Skov H; Skern-Mauritzen M; Hausner VH; Johns D; Tveraa T
    Ecology; 2011 Jan; 92(1):228-39. PubMed ID: 21560693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating the impacts of fishing on dependent predators: a case study in the California Current.
    Field JC; MacCall AD; Bradley RW; Sydeman WJ
    Ecol Appl; 2010 Dec; 20(8):2223-36. PubMed ID: 21265453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restoring piscivorous fish populations in the Laurentian Great Lakes causes seabird dietary change.
    Hebert CE; Weseloh DV; Idrissi A; Arts MT; O'Gorman R; Gorman OT; Locke B; Madenjian CP; Roseman EF
    Ecology; 2008 Apr; 89(4):891-7. PubMed ID: 18481511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive modelling of habitat selection by marine predators with respect to the abundance and depth distribution of pelagic prey.
    Boyd C; Castillo R; Hunt GL; Punt AE; VanBlaricom GR; Weimerskirch H; Bertrand S
    J Anim Ecol; 2015 Nov; 84(6):1575-88. PubMed ID: 26061120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatio-temporal dynamics of ocean conditions and forage taxa reveal regional structuring of seabird–prey relationships.
    Santora JA; Schroeder ID; Field JC; Wells BK; Sydeman WJ
    Ecol Appl; 2014; 24(7):1730-47. PubMed ID: 29210234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From plankton to top predators: bottom-up control of a marine food web across four trophic levels.
    Frederiksen M; Edwards M; Richardson AJ; Halliday NC; Wanless S
    J Anim Ecol; 2006 Nov; 75(6):1259-68. PubMed ID: 17032358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wasp-waist interactions in the North Sea ecosystem.
    Fauchald P; Skov H; Skern-Mauritzen M; Johns D; Tveraa T
    PLoS One; 2011; 6(7):e22729. PubMed ID: 21829494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predation and landscape characteristics independently affect reef fish community organization.
    Stier AC; Hanson KM; Holbrook SJ; Schmitt RJ; Brooks AJ
    Ecology; 2014 May; 95(5):1294-307. PubMed ID: 25000761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodiversity as both a cause and consequence of resource availability: a study of reciprocal causality in a predator-prey system.
    Cardinale BJ; Weis JJ; Forbes AE; Tilmon KJ; Ives AR
    J Anim Ecol; 2006 Mar; 75(2):497-505. PubMed ID: 16638002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fine-scale habitat modeling of a top marine predator: do prey data improve predictive capacity?
    Torres LG; Read AJ; Halpin P
    Ecol Appl; 2008 Oct; 18(7):1702-17. PubMed ID: 18839765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prey dispersal rate affects prey species composition and trait diversity in response to multiple predators in metacommunities.
    Howeth JG; Leibold MA
    J Anim Ecol; 2010 Sep; 79(5):1000-11. PubMed ID: 20584098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predation, habitat complexity, and variation in density-dependent mortality of temperate reef fishes.
    Johnson DW
    Ecology; 2006 May; 87(5):1179-88. PubMed ID: 16761597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A structured seabird population model reveals how alternative forage fish control rules benefit seabirds and fisheries.
    Koehn LE; Siple MC; Essington TE
    Ecol Appl; 2021 Oct; 31(7):e02401. PubMed ID: 34218492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of density dependence on predator-prey seabird interactions at large spatio-temporal scales.
    Oro D; Martínez-Abraín A; Paracuellos M; Nevado JC; Genovart M
    Proc Biol Sci; 2006 Feb; 273(1584):379-83. PubMed ID: 16543182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global seabird response to forage fish depletion--one-third for the birds.
    Cury PM; Boyd IL; Bonhommeau S; Anker-Nilssen T; Crawford RJ; Furness RW; Mills JA; Murphy EJ; Osterblom H; Paleczny M; Piatt JF; Roux JP; Shannon L; Sydeman WJ
    Science; 2011 Dec; 334(6063):1703-6. PubMed ID: 22194577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the distribution of foraging seabirds during a period of heightened environmental variability.
    Evans R; Lea MA; Hindell MA
    Ecol Appl; 2021 Jul; 31(5):e02343. PubMed ID: 33817895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of a local industrial sand lance fishery on seabird breeding performance.
    Frederiksen M; Jensen H; Daunt F; Mavor RA; Wanless S
    Ecol Appl; 2008 Apr; 18(3):701-10. PubMed ID: 18488628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined measurements of prey availability explain habitat selection in foraging seabirds.
    Waggitt JJ; Cazenave PW; Howarth LM; Evans PGH; van der Kooij J; Hiddink JG
    Biol Lett; 2018 Aug; 14(8):. PubMed ID: 30068542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive Modelling to Identify Near-Shore, Fine-Scale Seabird Distributions during the Breeding Season.
    Warwick-Evans VC; Atkinson PW; Robinson LA; Green JA
    PLoS One; 2016; 11(3):e0150592. PubMed ID: 27031616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct evidence of a prey depletion "halo" surrounding a pelagic predator colony.
    Weber SB; Richardson AJ; Brown J; Bolton M; Clark BL; Godley BJ; Leat E; Oppel S; Shearer L; Soetaert KER; Weber N; Broderick AC
    Proc Natl Acad Sci U S A; 2021 Jul; 118(28):. PubMed ID: 34260406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.