These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 21561413)

  • 1. Rheb/mTOR activation and regulation in cancer: novel treatment strategies beyond rapamycin.
    Babcock JT; Quilliam LA
    Curr Drug Targets; 2011 Jul; 12(8):1223-31. PubMed ID: 21561413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the Rheb-mTOR signaling pathway in mammalian cells: constitutive active mutants of Rheb and mTOR.
    Sato T; Umetsu A; Tamanoi F
    Methods Enzymol; 2008; 438():307-20. PubMed ID: 18413257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid regulation of TOR complex 1.
    Avruch J; Long X; Ortiz-Vega S; Rapley J; Papageorgiou A; Dai N
    Am J Physiol Endocrinol Metab; 2009 Apr; 296(4):E592-602. PubMed ID: 18765678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug discovery targeting the mTOR pathway.
    Martelli AM; Buontempo F; McCubrey JA
    Clin Sci (Lond); 2018 Mar; 132(5):543-568. PubMed ID: 29523752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth.
    Gibbons JJ; Abraham RT; Yu K
    Semin Oncol; 2009 Dec; 36 Suppl 3():S3-S17. PubMed ID: 19963098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estrogen-induced activation of mammalian target of rapamycin is mediated via tuberin and the small GTPase Ras homologue enriched in brain.
    Yu J; Henske EP
    Cancer Res; 2006 Oct; 66(19):9461-6. PubMed ID: 17018601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rheb signaling and tumorigenesis: mTORC1 and new horizons.
    Armijo ME; Campos T; Fuentes-Villalobos F; Palma ME; Pincheira R; Castro AF
    Int J Cancer; 2016 Apr; 138(8):1815-23. PubMed ID: 26234902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct signaling mechanisms of mTORC1 and mTORC2 in glioblastoma multiforme: a tale of two complexes.
    Jhanwar-Uniyal M; Gillick JL; Neil J; Tobias M; Thwing ZE; Murali R
    Adv Biol Regul; 2015 Jan; 57():64-74. PubMed ID: 25442674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Point mutations of the mTOR-RHEB pathway in renal cell carcinoma.
    Ghosh AP; Marshall CB; Coric T; Shim EH; Kirkman R; Ballestas ME; Ikura M; Bjornsti MA; Sudarshan S
    Oncotarget; 2015 Jul; 6(20):17895-910. PubMed ID: 26255626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent clinical trials of mTOR-targeted cancer therapies.
    Don AS; Zheng XF
    Rev Recent Clin Trials; 2011 Jan; 6(1):24-35. PubMed ID: 20868343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Rheb-mTOR signaling pathway involved in tumor formation].
    Sato T; Nakashima A; Tamanoi F
    Tanpakushitsu Kakusan Koso; 2010 Jan; 55(1):11-7. PubMed ID: 20058701
    [No Abstract]   [Full Text] [Related]  

  • 12. Involvement of mTORC1 and mTORC2 in regulation of glioblastoma multiforme growth and motility.
    Gulati N; Karsy M; Albert L; Murali R; Jhanwar-Uniyal M
    Int J Oncol; 2009 Oct; 35(4):731-40. PubMed ID: 19724909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New inhibitors of the PI3K-Akt-mTOR pathway: insights into mTOR signaling from a new generation of Tor Kinase Domain Inhibitors (TORKinibs).
    Feldman ME; Shokat KM
    Curr Top Microbiol Immunol; 2010; 347():241-62. PubMed ID: 20549474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. mTOR in renal cell cancer: modulator of tumor biology and therapeutic target.
    Wysocki PJ
    Expert Rev Mol Diagn; 2009 Apr; 9(3):231-41. PubMed ID: 19379082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid turnover of the mTOR complex 1 (mTORC1) repressor REDD1 and activation of mTORC1 signaling following inhibition of protein synthesis.
    Kimball SR; Do AND; Kutzler L; Cavener DR; Jefferson LS
    J Biol Chem; 2008 Feb; 283(6):3465-3475. PubMed ID: 18070882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Rheb switch 2 segment is critical for signaling to target of rapamycin complex 1.
    Long X; Lin Y; Ortiz-Vega S; Busch S; Avruch J
    J Biol Chem; 2007 Jun; 282(25):18542-18551. PubMed ID: 17470430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin.
    Yu K; Toral-Barza L; Shi C; Zhang WG; Lucas J; Shor B; Kim J; Verheijen J; Curran K; Malwitz DJ; Cole DC; Ellingboe J; Ayral-Kaloustian S; Mansour TS; Gibbons JJ; Abraham RT; Nowak P; Zask A
    Cancer Res; 2009 Aug; 69(15):6232-40. PubMed ID: 19584280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Furthering the design and the discovery of small molecule ATP-competitive mTOR inhibitors as an effective cancer treatment.
    Lv X; Ma X; Hu Y
    Expert Opin Drug Discov; 2013 Aug; 8(8):991-1012. PubMed ID: 23668243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current status and challenges associated with targeting mTOR for cancer therapy.
    Dowling RJ; Pollak M; Sonenberg N
    BioDrugs; 2009; 23(2):77-91. PubMed ID: 19489650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel role of the small GTPase Rheb: its implication in endocytic pathway independent of the activation of mammalian target of rapamycin.
    Saito K; Araki Y; Kontani K; Nishina H; Katada T
    J Biochem; 2005 Mar; 137(3):423-30. PubMed ID: 15809346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.