These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 21561647)

  • 1. Fracture simulation of restored teeth using a continuum damage mechanics failure model.
    Li H; Li J; Zou Z; Fok AS
    Dent Mater; 2011 Jul; 27(7):e125-33. PubMed ID: 21561647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strengthening of a model composite restoration using shape optimization: a numerical and experimental study.
    Li H; Yun X; Li J; Shi L; Fok AS; Madden MJ; Labuz JF
    Dent Mater; 2010 Feb; 26(2):126-34. PubMed ID: 19818487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient thermal and stress analysis of maxillary second premolar tooth using an exact three-dimensional model.
    Hashemipour MA; Mohammadpour A; Nassab SA
    Indian J Dent Res; 2010; 21(2):158-64. PubMed ID: 20657080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of the mechanical behavior of posterior teeth with amalgam and composite MOD restorations.
    Arola D; Galles LA; Sarubin MF
    J Dent; 2001 Jan; 29(1):63-73. PubMed ID: 11137640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fracture behavior of restored teeth and cavity shape optimization: Numerical and experimental investigation.
    Masoudi Nejad R; Ghahremani Moghadam D; Ramazani Moghadam M; Aslani M; Asghari Moghaddam H; Mir M
    J Mech Behav Biomed Mater; 2021 Dec; 124():104829. PubMed ID: 34530299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical fatigue 3D-FE modeling of indirect composite-restored posterior teeth.
    Ausiello P; Franciosa P; Martorelli M; Watts DC
    Dent Mater; 2011 May; 27(5):423-30. PubMed ID: 21227484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restoration of non-carious cervical lesions Part II. Restorative material selection to minimise fracture.
    Ichim IP; Schmidlin PR; Li Q; Kieser JA; Swain MV
    Dent Mater; 2007 Dec; 23(12):1562-9. PubMed ID: 17391747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The three-dimension finite element analysis of stress in posterior tooth residual root restored with postcore crown.
    Fu G; Deng F; Wang L; Ren A
    Dent Traumatol; 2010 Feb; 26(1):64-9. PubMed ID: 19843136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vertical root fracture in upper premolars with endodontic posts: finite element analysis.
    Santos AF; Tanaka CB; Lima RG; EspĆ³sito CO; Ballester RY; Braga RR; Meira JB
    J Endod; 2009 Jan; 35(1):117-20. PubMed ID: 19084139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strength estimation of different designs of ceramic inlays and onlays in molars based on the Tsai-Wu failure criterion.
    Dejak B; Mlotkowski A; Romanowicz M
    J Prosthet Dent; 2007 Aug; 98(2):89-100. PubMed ID: 17692590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corono-radicular reconstruction of pulpless teeth: a mechanical study using finite element analysis.
    Pierrisnard L; Bohin F; Renault P; Barquins M
    J Prosthet Dent; 2002 Oct; 88(4):442-8. PubMed ID: 12447223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porcelain versus composite inlays/onlays: effects of mechanical loads on stress distribution, adhesion, and crown flexure.
    Magne P; Belser UC
    Int J Periodontics Restorative Dent; 2003 Dec; 23(6):543-55. PubMed ID: 14703758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Teeth restored using fiber-reinforced posts: in vitro fracture tests and finite element analysis.
    Schmitter M; Rammelsberg P; Lenz J; Scheuber S; Schweizerhof K; Rues S
    Acta Biomater; 2010 Sep; 6(9):3747-54. PubMed ID: 20227533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fracture resistance of maxillary premolars restored with direct and indirect adhesive techniques.
    Santos MJ; Bezerra RB
    J Can Dent Assoc; 2005 Sep; 71(8):585. PubMed ID: 16202199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On material choice and fracture susceptibility of restored teeth: an asymptotic stress analysis approach.
    Kahler B; Kotousov A; Melkoumian N
    Dent Mater; 2006 Dec; 22(12):1109-14. PubMed ID: 16375962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of different transitional restorations on the fracture resistance of premolar teeth.
    Qualtrough AJ; Cawte SG; Wilson NH
    Oper Dent; 2001; 26(3):267-72. PubMed ID: 11357569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fracture resistance of teeth directly and indirectly restored with composite resin and indirectly restored with ceramic materials.
    Dalpino PH; Francischone CE; Ishikiriama A; Franco EB
    Am J Dent; 2002 Dec; 15(6):389-94. PubMed ID: 12691276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of bonded amalgam restorations on the fracture strength of teeth.
    Oliveira JP; Cochran MA; Moore BK
    Oper Dent; 1996; 21(3):110-5. PubMed ID: 9002870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress distribution in molars restored with inlays or onlays with or without endodontic treatment: a three-dimensional finite element analysis.
    Jiang W; Bo H; Yongchun G; LongXing N
    J Prosthet Dent; 2010 Jan; 103(1):6-12. PubMed ID: 20105674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural optimization of the fibre-reinforced composite substructure in a three-unit dental bridge.
    Shi L; Fok AS
    Dent Mater; 2009 Jun; 25(6):791-801. PubMed ID: 19185911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.