These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 21561854)

  • 1. The crystal structure and mechanism of an unusual oxidoreductase, GilR, involved in gilvocarcin V biosynthesis.
    Noinaj N; Bosserman MA; Schickli MA; Piszczek G; Kharel MK; Pahari P; Buchanan SK; Rohr J
    J Biol Chem; 2011 Jul; 286(26):23533-43. PubMed ID: 21561854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GilR, an unusual lactone-forming enzyme involved in gilvocarcin biosynthesis.
    Kharel MK; Pahari P; Lian H; Rohr J
    Chembiochem; 2009 May; 10(8):1305-8. PubMed ID: 19388008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure and site-directed mutagenesis of 3-ketosteroid Δ1-dehydrogenase from Rhodococcus erythropolis SQ1 explain its catalytic mechanism.
    Rohman A; van Oosterwijk N; Thunnissen AM; Dijkstra BW
    J Biol Chem; 2013 Dec; 288(49):35559-68. PubMed ID: 24165124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into structure and function of the active site of SoxAX cytochromes.
    Kilmartin JR; Maher MJ; Krusong K; Noble CJ; Hanson GR; Bernhardt PV; Riley MJ; Kappler U
    J Biol Chem; 2011 Jul; 286(28):24872-81. PubMed ID: 21592966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of the synergistic reductive O-methyltransferase GilM and of O-methyltransferase GilMT in the gilvocarcin biosynthetic pathway.
    Tibrewal N; Downey TE; Van Lanen SG; Ul Sharif E; O'Doherty GA; Rohr J
    J Am Chem Soc; 2012 Aug; 134(30):12402-5. PubMed ID: 22800463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of the ketoreductase gilU gene of the gilvocarcin biosynthetic gene cluster yields new analogues with partly improved biological activity.
    Liu T; Kharel MK; Zhu L; Bright SA; Mattingly C; Adams VR; Rohr J
    Chembiochem; 2009 Jan; 10(2):278-86. PubMed ID: 19067453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aclacinomycin oxidoreductase (AknOx) from the biosynthetic pathway of the antibiotic aclacinomycin is an unusual flavoenzyme with a dual active site.
    Alexeev I; Sultana A; Mäntsälä P; Niemi J; Schneider G
    Proc Natl Acad Sci U S A; 2007 Apr; 104(15):6170-5. PubMed ID: 17395717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covalent flavinylation is essential for efficient redox catalysis in vanillyl-alcohol oxidase.
    Fraaije MW; van den Heuvel RH; van Berkel WJ; Mattevi A
    J Biol Chem; 1999 Dec; 274(50):35514-20. PubMed ID: 10585424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of active-site residues in catalysis, substrate binding, cooperativity, and the reaction mechanism of the quinoprotein glycine oxidase.
    Mamounis KJ; Yukl ET; Davidson VL
    J Biol Chem; 2020 May; 295(19):6472-6481. PubMed ID: 32234764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and biochemical analyses reveal insights into covalent flavinylation of the
    Starbird CA; Maklashina E; Sharma P; Qualls-Histed S; Cecchini G; Iverson TM
    J Biol Chem; 2017 Aug; 292(31):12921-12933. PubMed ID: 28615448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delineating the earliest steps of gilvocarcin biosynthesis: role of GilP and GilQ in starter unit specificity.
    Shepherd MD; Kharel MK; Zhu LL; van Lanen SG; Rohr J
    Org Biomol Chem; 2010 Sep; 8(17):3851-6. PubMed ID: 20617244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chloramphenicol biosynthesis: the structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond.
    Podzelinska K; Latimer R; Bhattacharya A; Vining LC; Zechel DL; Jia Z
    J Mol Biol; 2010 Mar; 397(1):316-31. PubMed ID: 20080101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of a thermostable F
    Kumar H; Nguyen QT; Binda C; Mattevi A; Fraaije MW
    J Biol Chem; 2017 Jun; 292(24):10123-10130. PubMed ID: 28411200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and catalytic mechanism of 3-ketosteroid-Delta4-(5α)-dehydrogenase from Rhodococcus jostii RHA1 genome.
    van Oosterwijk N; Knol J; Dijkhuizen L; van der Geize R; Dijkstra BW
    J Biol Chem; 2012 Sep; 287(37):30975-83. PubMed ID: 22833669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Daidzein reductase of Eggerthella sp. YY7918, its octameric subunit structure containing FMN/FAD/4Fe-4S, and its enantioselective production of R-dihydroisoflavones.
    Kawada Y; Goshima T; Sawamura R; Yokoyama SI; Yanase E; Niwa T; Ebihara A; Inagaki M; Yamaguchi K; Kuwata K; Kato Y; Sakurada O; Suzuki T
    J Biosci Bioeng; 2018 Sep; 126(3):301-309. PubMed ID: 29699942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of archaeal Rib7 and eubacterial RibG reductases in riboflavin biosynthesis: Substrate specificity and cofactor preference.
    Chen SC; Yen TM; Chang TH; Liaw SH
    Biochem Biophys Res Commun; 2018 Sep; 503(1):195-201. PubMed ID: 29864427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of VioE, a key player in the construction of the molecular skeleton of violacein.
    Hirano S; Asamizu S; Onaka H; Shiro Y; Nagano S
    J Biol Chem; 2008 Mar; 283(10):6459-66. PubMed ID: 18171677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for substrate specificity of methylsuccinyl-CoA dehydrogenase, an unusual member of the acyl-CoA dehydrogenase family.
    Schwander T; McLean R; Zarzycki J; Erb TJ
    J Biol Chem; 2018 Feb; 293(5):1702-1712. PubMed ID: 29275330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of the ECH2 catalytic domain of CurF from Lyngbya majuscula. Insights into a decarboxylase involved in polyketide chain beta-branching.
    Geders TW; Gu L; Mowers JC; Liu H; Gerwick WH; Håkansson K; Sherman DH; Smith JL
    J Biol Chem; 2007 Dec; 282(49):35954-63. PubMed ID: 17928301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring substrate binding and discrimination in fructose1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases.
    Zgiby SM; Thomson GJ; Qamar S; Berry A
    Eur J Biochem; 2000 Mar; 267(6):1858-68. PubMed ID: 10712619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.