These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Assessment of flower number per inflorescence in grapevine by image analysis under field conditions. Diago MP; Sanz-Garcia A; Millan B; Blasco J; Tardaguila J J Sci Food Agric; 2014 Aug; 94(10):1981-7. PubMed ID: 24302287 [TBL] [Abstract][Full Text] [Related]
6. Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses. Salazar-Parra C; Aranjuelo I; Pascual I; Erice G; Sanz-Sáez Á; Aguirreolea J; Sánchez-Díaz M; Irigoyen JJ; Araus JL; Morales F J Plant Physiol; 2015 Feb; 174():97-109. PubMed ID: 25462972 [TBL] [Abstract][Full Text] [Related]
7. Effects of flumioxazin herbicide on carbon nutrition of Vitis vinifera L. Saladin G; Magné C; Clément C J Agric Food Chem; 2003 Jul; 51(14):4017-22. PubMed ID: 12822940 [TBL] [Abstract][Full Text] [Related]
8. Photosynthesis of the grapevine (Vitis vinifera) inflorescence. Lebon G; Brun O; Magné C; Clément C Tree Physiol; 2005 May; 25(5):633-9. PubMed ID: 15741155 [TBL] [Abstract][Full Text] [Related]
9. Distinct regulation in inflorescence carbohydrate metabolism according to grapevine cultivars during floral development. Sawicki M; Jacquens L; Baillieul F; Clément C; Vaillant-Gaveau N; Jacquard C Physiol Plant; 2015 Jul; 154(3):447-67. PubMed ID: 25585972 [TBL] [Abstract][Full Text] [Related]
10. Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues. Compant S; Kaplan H; Sessitsch A; Nowak J; Ait Barka E; Clément C FEMS Microbiol Ecol; 2008 Jan; 63(1):84-93. PubMed ID: 18081592 [TBL] [Abstract][Full Text] [Related]
11. Vitis vinifera root and leaf metabolic composition during fruit maturation: implications of defoliation. Rossouw GC; Orchard BA; Šuklje K; Smith JP; Barril C; Deloire A; Holzapfel BP Physiol Plant; 2017 Dec; 161(4):434-450. PubMed ID: 28692131 [TBL] [Abstract][Full Text] [Related]
12. Transcriptional analysis of tendril and inflorescence development in grapevine (Vitis vinifera L.). Díaz-Riquelme J; Martínez-Zapater JM; Carmona MJ PLoS One; 2014; 9(3):e92339. PubMed ID: 24637773 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of Fruit Technological Maturity and Alteration of the Flavonoid Metabolomic Profile in Merlot ( Vitis vinifera L.) by Early Mechanical Leaf Removal. VanderWeide J; Medina-Meza IG; Frioni T; Sivilotti P; Falchi R; Sabbatini P J Agric Food Chem; 2018 Sep; 66(37):9839-9849. PubMed ID: 30130400 [TBL] [Abstract][Full Text] [Related]
14. Gibberellin metabolism in Vitis vinifera L. during bloom and fruit-set: functional characterization and evolution of grapevine gibberellin oxidases. Giacomelli L; Rota-Stabelli O; Masuero D; Acheampong AK; Moretto M; Caputi L; Vrhovsek U; Moser C J Exp Bot; 2013 Nov; 64(14):4403-19. PubMed ID: 24006417 [TBL] [Abstract][Full Text] [Related]
15. Immunocharacterization of Vitis vinifera L. ferredoxin-dependent glutamate synthase, and its spatial and temporal changes during leaf development. Loulakakis KA; Primikirios NI; Nikolantonakis MA; Roubelakis-Angelakis KA Planta; 2002 Aug; 215(4):630-8. PubMed ID: 12172846 [TBL] [Abstract][Full Text] [Related]
16. Co-evolution between Grapevine rupestris stem pitting-associated virus and Vitis vinifera L. leads to decreased defence responses and increased transcription of genes related to photosynthesis. Gambino G; Cuozzo D; Fasoli M; Pagliarani C; Vitali M; Boccacci P; Pezzotti M; Mannini F J Exp Bot; 2012 Oct; 63(16):5919-33. PubMed ID: 22987838 [TBL] [Abstract][Full Text] [Related]
17. Assessing of the contributions of pod photosynthesis to carbon acquisition of seed in alfalfa (Medicago sativa L.). Zhang W; Mao P; Li Y; Wang M; Xia F; Wang H Sci Rep; 2017 Feb; 7():42026. PubMed ID: 28169330 [TBL] [Abstract][Full Text] [Related]
18. A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism. Martínez-Esteso MJ; Sellés-Marchart S; Lijavetzky D; Pedreño MA; Bru-Martínez R J Exp Bot; 2011 May; 62(8):2521-69. PubMed ID: 21576399 [TBL] [Abstract][Full Text] [Related]
19. Generation of ESTs in Vitis vinifera wine grape (Cabernet Sauvignon) and table grape (Muscat Hamburg) and discovery of new candidate genes with potential roles in berry development. Peng FY; Reid KE; Liao N; Schlosser J; Lijavetzky D; Holt R; Martínez Zapater JM; Jones S; Marra M; Bohlmann J; Lund ST Gene; 2007 Nov; 402(1-2):40-50. PubMed ID: 17761391 [TBL] [Abstract][Full Text] [Related]
20. 13C labelling reveals different contributions of photoassimilates from infructescences for fruiting in two temperate forest tree species. Hoch G; Keel SG Plant Biol (Stuttg); 2006 Sep; 8(5):606-14. PubMed ID: 16883486 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]