BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 21562330)

  • 1. Metabolic adaptations of phosphate-starved plants.
    Plaxton WC; Tran HT
    Plant Physiol; 2011 Jul; 156(3):1006-15. PubMed ID: 21562330
    [No Abstract]   [Full Text] [Related]  

  • 2. Functions and regulation of phosphate starvation-induced secreted acid phosphatases in higher plants.
    Wang L; Liu D
    Plant Sci; 2018 Jun; 271():108-116. PubMed ID: 29650148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Functions of phosphate-responsible genes in plants].
    Mitsukawa N; Shibata D
    Tanpakushitsu Kakusan Koso; 1999 Nov; 44(15 Suppl):2278-83. PubMed ID: 10586669
    [No Abstract]   [Full Text] [Related]  

  • 4. Smart role of plant 14-3-3 proteins in response to phosphate deficiency.
    Xu W; Jia L; Shi W; Liang J; Zhang J
    Plant Signal Behav; 2012 Aug; 7(8):1047-8. PubMed ID: 22836492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative genetic analysis of Arabidopsis purple acid phosphatases AtPAP10, AtPAP12, and AtPAP26 provides new insights into their roles in plant adaptation to phosphate deprivation.
    Wang L; Lu S; Zhang Y; Li Z; Du X; Liu D
    J Integr Plant Biol; 2014 Mar; 56(3):299-314. PubMed ID: 24528675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that tolerance of Eutrema salsugineum to low phosphate conditions is hard-wired by constitutive metabolic and root-associated adaptations.
    Velasco VME; Irani S; Axakova A; da Silva R; Summers PS; Weretilnyk EA
    Planta; 2019 Nov; 251(1):18. PubMed ID: 31781937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lectin AtGAL1 interacts with high-mannose glycoform of the purple acid phosphatase AtPAP26 secreted by phosphate-starved Arabidopsis.
    Ghahremani M; Park J; Anderson EM; Marty-Howard NJ; Mullen RT; Plaxton WC
    Plant Cell Environ; 2019 Apr; 42(4):1158-1166. PubMed ID: 30341950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation.
    Wang L; Li Z; Qian W; Guo W; Gao X; Huang L; Wang H; Zhu H; Wu JW; Wang D; Liu D
    Plant Physiol; 2011 Nov; 157(3):1283-99. PubMed ID: 21941000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacological stimulation of red blood cell metabolism for high altitude preadaptation.
    Moore LG; Brewer GJ; Oelshlegel FJ; Rose AM
    Adv Exp Med Biol; 1973; 37():693-8. PubMed ID: 4766494
    [No Abstract]   [Full Text] [Related]  

  • 10. Reciprocal control of anaplerotic phosphoenolpyruvate carboxylase by in vivo monoubiquitination and phosphorylation in developing proteoid roots of phosphate-deficient harsh hakea.
    Shane MW; Fedosejevs ET; Plaxton WC
    Plant Physiol; 2013 Apr; 161(4):1634-44. PubMed ID: 23407057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of phosphate and acid phosphatase during germination of Pinus pinea seed.
    Firenzuoli AM; Mastronuzzi E; Vanni P; Zanobini A
    Experientia; 1970 Jun; 26(6):596-8. PubMed ID: 5424327
    [No Abstract]   [Full Text] [Related]  

  • 12. Regulation of phosphate starvation responses in plants: signaling players and cross-talks.
    Rouached H; Arpat AB; Poirier Y
    Mol Plant; 2010 Mar; 3(2):288-99. PubMed ID: 20142416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphate or phosphite addition promotes the proteolytic turnover of phosphate-starvation inducible tomato purple acid phosphatase isozymes.
    Bozzo GG; Singh VK; Plaxton WC
    FEBS Lett; 2004 Aug; 573(1-3):51-4. PubMed ID: 15327974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dual-targeted purple acid phosphatase isozyme AtPAP26 is essential for efficient acclimation of Arabidopsis to nutritional phosphate deprivation.
    Hurley BA; Tran HT; Marty NJ; Park J; Snedden WA; Mullen RT; Plaxton WC
    Plant Physiol; 2010 Jul; 153(3):1112-22. PubMed ID: 20348213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization of acid phosphatase activity, phosphate ions and inorganic cations in plant nuclear coiled bodies.
    de la Espina SM; Sánchez-Pina MA; Risueño MC
    Cell Biol Int Rep; 1982 Jun; 6(6):601-7. PubMed ID: 6179638
    [No Abstract]   [Full Text] [Related]  

  • 16. [Phosphate status and regulation system in plants].
    Mimura T; Ohnishi M; Fukaki H
    Tanpakushitsu Kakusan Koso; 2007 May; 52(6 Suppl):625-32. PubMed ID: 17566365
    [No Abstract]   [Full Text] [Related]  

  • 17. Mobilization and acquisition of sparingly soluble P-Sources by Brassica cultivars under P-starved environment II. Rhizospheric pH changes, redesigned root architecture and pi-uptake kinetics.
    Akhtar MS; Oki Y; Adachi T
    J Integr Plant Biol; 2009 Nov; 51(11):1024-39. PubMed ID: 19903224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of salt stress on respiration metabolism in higher plants].
    Mittova VO; Igamberdiev AU
    Izv Akad Nauk Ser Biol; 2000; (3):322-8. PubMed ID: 10868056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbohydrate breakdown by chloroplasts of Pisum sativum.
    Stitt M; Rees TA
    Biochim Biophys Acta; 1980 Jan; 627(2):131-43. PubMed ID: 7350922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rising from the sea: correlations between sulfated polysaccharides and salinity in plants.
    Aquino RS; Grativol C; Mourão PA
    PLoS One; 2011 Apr; 6(4):e18862. PubMed ID: 21552557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.