These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 21562649)
21. Surface characterization using chemical force microscopy and the flow performance of modified polydimethylsiloxane for microfluidic device applications. Wang B; Abdulali-Kanji Z; Dodwell E; Horton JH; Oleschuk RD Electrophoresis; 2003 May; 24(9):1442-50. PubMed ID: 12731032 [TBL] [Abstract][Full Text] [Related]
22. Convenient method for modifying poly(dimethylsiloxane) to be airtight and resistive against absorption of small molecules. Ren K; Zhao Y; Su J; Ryan D; Wu H Anal Chem; 2010 Jul; 82(14):5965-71. PubMed ID: 20565080 [TBL] [Abstract][Full Text] [Related]
23. Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels. Sui G; Wang J; Lee CC; Lu W; Lee SP; Leyton JV; Wu AM; Tseng HR Anal Chem; 2006 Aug; 78(15):5543-51. PubMed ID: 16878894 [TBL] [Abstract][Full Text] [Related]
24. Rapid microfabrication of solvent-resistant biocompatible microfluidic devices. Hung LH; Lin R; Lee AP Lab Chip; 2008 Jun; 8(6):983-7. PubMed ID: 18497921 [TBL] [Abstract][Full Text] [Related]
25. Rapid prototyping of microfluidic devices with a wax printer. Kaigala GV; Ho S; Penterman R; Backhouse CJ Lab Chip; 2007 Mar; 7(3):384-7. PubMed ID: 17330171 [TBL] [Abstract][Full Text] [Related]
27. Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip. Kim SM; Burns MA; Hasselbrink EF Anal Chem; 2006 Jul; 78(14):4779-85. PubMed ID: 16841895 [TBL] [Abstract][Full Text] [Related]
28. Beyond PDMS: off-stoichiometry thiol-ene (OSTE) based soft lithography for rapid prototyping of microfluidic devices. Carlborg CF; Haraldsson T; Öberg K; Malkoch M; van der Wijngaart W Lab Chip; 2011 Sep; 11(18):3136-47. PubMed ID: 21804987 [TBL] [Abstract][Full Text] [Related]
29. Capillary-assembled microchip for universal integration of various chemical functions onto a single microfluidic device. Hisamoto H; Nakashima Y; Kitamura C; Funano S; Yasuoka M; Morishima K; Kikutani Y; Kitamori T; Terabe S Anal Chem; 2004 Jun; 76(11):3222-8. PubMed ID: 15167805 [TBL] [Abstract][Full Text] [Related]
30. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite. Kim J; Surapaneni R; Gale BK Lab Chip; 2009 May; 9(9):1290-3. PubMed ID: 19370251 [TBL] [Abstract][Full Text] [Related]
31. Patterning microbeads inside poly(dimethylsiloxane) microfluidic channels and its application for immobilized microfluidic enzyme reactors. Zhang Q; Xu JJ; Chen HY Electrophoresis; 2006 Dec; 27(24):4943-51. PubMed ID: 17117456 [TBL] [Abstract][Full Text] [Related]
38. Control of the ZnO nanowires nucleation site using microfluidic channels. Lee SH; Lee HJ; Oh D; Lee SW; Goto H; Buckmaster R; Yasukawa T; Matsue T; Hong SK; Ko H; Cho MW; Yao T J Phys Chem B; 2006 Mar; 110(9):3856-9. PubMed ID: 16509665 [TBL] [Abstract][Full Text] [Related]