These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 21562653)

  • 1. High-performance supercapacitor electrodes based on graphene hydrogels modified with 2-aminoanthraquinone moieties.
    Wu Q; Sun Y; Bai H; Shi G
    Phys Chem Chem Phys; 2011 Jun; 13(23):11193-8. PubMed ID: 21562653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities.
    Choi BG; Yang M; Hong WH; Choi JW; Huh YS
    ACS Nano; 2012 May; 6(5):4020-8. PubMed ID: 22524516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supercapacitors based on self-assembled graphene organogel.
    Sun Y; Wu Q; Shi G
    Phys Chem Chem Phys; 2011 Oct; 13(38):17249-54. PubMed ID: 21879072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid hydrogels of porous graphene and nickel hydroxide as advanced supercapacitor materials.
    Chen S; Duan J; Tang Y; Zhang Qiao S
    Chemistry; 2013 May; 19(22):7118-24. PubMed ID: 23553792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications.
    Han J; Zhang LL; Lee S; Oh J; Lee KS; Potts JR; Ji J; Zhao X; Ruoff RS; Park S
    ACS Nano; 2013 Jan; 7(1):19-26. PubMed ID: 23244292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supercapacitor electrodes with especially high rate capability and cyclability based on a novel Pt nanosphere and cysteine-generated graphene.
    Zhang D; Zhang X; Chen Y; Wang C; Ma Y; Dong H; Jiang L; Meng Q; Hu W
    Phys Chem Chem Phys; 2012 Aug; 14(31):10899-903. PubMed ID: 22772748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of supercapacitor electrodes through selection of graphene surface functionalities.
    Lai L; Yang H; Wang L; Teh BK; Zhong J; Chou H; Chen L; Chen W; Shen Z; Ruoff RS; Lin J
    ACS Nano; 2012 Jul; 6(7):5941-51. PubMed ID: 22632101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Assembled Hierarchical Formation of Conjugated 3D Cobalt Oxide Nanobead-CNT-Graphene Nanostructure Using Microwaves for High-Performance Supercapacitor Electrode.
    Kumar R; Singh RK; Dubey PK; Singh DP; Yadav RM
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):15042-51. PubMed ID: 26086175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water-soluble graphene grafted by poly(sodium 4-styrenesulfonate) for enhancement of electric capacitance.
    Du FP; Wang JJ; Tang CY; Tsui CP; Zhou XP; Xie XL; Liao YG
    Nanotechnology; 2012 Nov; 23(47):475704. PubMed ID: 23103878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Layered graphene oxide nanostructures with sandwiched conducting polymers as supercapacitor electrodes.
    Zhang LL; Zhao S; Tian XN; Zhao XS
    Langmuir; 2010 Nov; 26(22):17624-8. PubMed ID: 20961127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores.
    Kim T; Jung G; Yoo S; Suh KS; Ruoff RS
    ACS Nano; 2013 Aug; 7(8):6899-905. PubMed ID: 23829569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High performance of a solid-state flexible asymmetric supercapacitor based on graphene films.
    Choi BG; Chang SJ; Kang HW; Park CP; Kim HJ; Hong WH; Lee S; Huh YS
    Nanoscale; 2012 Aug; 4(16):4983-8. PubMed ID: 22751863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2.
    Gao H; Xiao F; Ching CB; Duan H
    ACS Appl Mater Interfaces; 2012 May; 4(5):2801-10. PubMed ID: 22545683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wet-spun, porous, orientational graphene hydrogel films for high-performance supercapacitor electrodes.
    Kou L; Liu Z; Huang T; Zheng B; Tian Z; Deng Z; Gao C
    Nanoscale; 2015 Mar; 7(9):4080-7. PubMed ID: 25660705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes.
    Ning G; Fan Z; Wang G; Gao J; Qian W; Wei F
    Chem Commun (Camb); 2011 Jun; 47(21):5976-8. PubMed ID: 21475753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2-Amino-3-chloro-1,4-naphthoquinone-covalent modification of graphene nanosheets for efficient electrochemical energy storage.
    Hou L; Hu Z; Wu H; Wang X; Xie Y; Li S; Ma F; Zhu C
    Dalton Trans; 2019 Jun; 48(25):9234-9242. PubMed ID: 31161176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes.
    Kim TY; Lee HW; Stoller M; Dreyer DR; Bielawski CW; Ruoff RS; Suh KS
    ACS Nano; 2011 Jan; 5(1):436-42. PubMed ID: 21142183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multilayered nano-architecture of variable sized graphene nanosheets for enhanced supercapacitor electrode performance.
    Biswas S; Drzal LT
    ACS Appl Mater Interfaces; 2010 Aug; 2(8):2293-300. PubMed ID: 20735100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile synthesis of nickel network supported three-dimensional graphene gel as a lightweight and binder-free electrode for high rate performance supercapacitor application.
    Huang H; Xu L; Tang Y; Tang S; Du Y
    Nanoscale; 2014 Feb; 6(4):2426-33. PubMed ID: 24441914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of temperature on the capacitance of carbon nanotube supercapacitors.
    Masarapu C; Zeng HF; Hung KH; Wei B
    ACS Nano; 2009 Aug; 3(8):2199-206. PubMed ID: 19583250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.