BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 21562773)

  • 1. Compartmentalization and ultrastructural alterations induced by chromium in aquatic macrophytes.
    Mangabeira PA; Ferreira AS; de Almeida AA; Fernandes VF; Lucena E; Souza VL; dos Santos Júnior AJ; Oliveira AH; Grenier-Loustalot MF; Barbier F; Silva DC
    Biometals; 2011 Dec; 24(6):1017-26. PubMed ID: 21562773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems.
    Vardanyan LG; Ingole BS
    Environ Int; 2006 Feb; 32(2):208-18. PubMed ID: 16213586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Root uptake and reduction of hexavalent chromium by aquatic macrophytes as assessed by high-resolution X-ray emission.
    Espinoza-Quiñones FR; Martin N; Stutz G; Tirao G; Palácio SM; Rizzutto MA; Módenes AN; Silva FG; Szymanski N; Kroumov AD
    Water Res; 2009 Sep; 43(17):4159-66. PubMed ID: 19595427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructure and subcellular distribution of Cr in Iris pseudacorus L. using TEM and X-ray microanalysis.
    Caldelas C; Bort J; Febrero A
    Cell Biol Toxicol; 2012 Feb; 28(1):57-68. PubMed ID: 22009188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of synchrotron- and plasma-based spectroscopic techniques to determine the uptake and biotransformation of chromium(III) and chromium(VI) by Parkinsonia aculeata.
    Zhao Y; Parsons JG; Peralta-Videa JR; Lopez-Moreno ML; Gardea-Torresdey JL
    Metallomics; 2009; 1(4):330-8. PubMed ID: 21305130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity and bioaccumulation potential of Cr (VI) and Hg (II) on differential concentration by Eichhornia crassipes in hydroponic culture.
    Giri AK; Patel RK
    Water Sci Technol; 2011; 63(5):899-907. PubMed ID: 21411939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioaccumulation kinetics and toxic effects of Cr, Ni and Zn on Eichhornia crassipes.
    Hadad HR; Maine MA; Mufarrege MM; Del Sastre MV; Di Luca GA
    J Hazard Mater; 2011 Jun; 190(1-3):1016-22. PubMed ID: 21555183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [FTIR spectroscopic characterization of chromium-induced changes in root cell wall of plants].
    Zhang XB; Liu P; Li DT; Xu GD; Jiang MJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 May; 28(5):1067-70. PubMed ID: 18720803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes).
    Mishra VK; Tripathi BD
    J Hazard Mater; 2009 May; 164(2-3):1059-63. PubMed ID: 18938031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation and distribution of trivalent chromium and effects on hybrid willow (Salix matsudana Koidz x alba L.) metabolism.
    Yu XZ; Gu JD
    Arch Environ Contam Toxicol; 2007 May; 52(4):503-11. PubMed ID: 17380236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromium bioaccumulation: comparison of the capacity of two floating aquatic macrophytes.
    Maine MA; Suñé NL; Lagger SC
    Water Res; 2004 Mar; 38(6):1494-501. PubMed ID: 15016526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cadmium and chromium removal kinetics from solution by two aquatic macrophytes.
    Suñe N; Sánchez G; Caffaratti S; Maine MA
    Environ Pollut; 2007 Jan; 145(2):467-73. PubMed ID: 16815611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silver and gold nanoparticles in plants: sites for the reduction to metal.
    Beattie IR; Haverkamp RG
    Metallomics; 2011 Jun; 3(6):628-32. PubMed ID: 21611658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans.
    Fritioff A; Greger M
    Chemosphere; 2006 Apr; 63(2):220-7. PubMed ID: 16213560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity of the macrophytes Pistia stratiotes and Eichhornia crassipes to hexazinone and dissipation of this pesticide in aquatic ecosystems.
    Ribeiro VHV; Alencar BTB; Dos Santos NMC; da Costa VAM; Dos Santos JB; Francino DMT; Souza MF; Silva DV
    Ecotoxicol Environ Saf; 2019 Jan; 168():177-183. PubMed ID: 30388534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metal accumulation in Halimione portulacoides: intra- and extra-cellular metal binding sites.
    Sousa AI; Caçador I; Lillebø AI; Pardal MA
    Chemosphere; 2008 Jan; 70(5):850-7. PubMed ID: 17764720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal and physiological influence of the absorption of nutrients and toxic elements by Eichhornia crassipes.
    Martins DF; de Fátima Vitória de Moura M; Bezerra Loiola MI; Di Souza L; Barbosa E Silva KM; Francismar de Medeiros J
    J Environ Monit; 2011 Feb; 13(2):274-9. PubMed ID: 21165485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of autochthonous aquatic macrophytes with phytoremediation potential for dairy wastewater treatment in floating constructed wetlands.
    Queiroz RCS; Lôbo IP; Ribeiro VS; Rodrigues LB; Almeida Neto JA
    Int J Phytoremediation; 2020; 22(5):518-528. PubMed ID: 31718243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different compensatory mechanisms in two metal-accumulating aquatic macrophytes exposed to acute cadmium stress in outdoor artificial lakes.
    Sanità di Toppi L; Vurro E; Rossi L; Marabottini R; Musetti R; Careri M; Maffini M; Mucchino C; Corradini C; Badiani M
    Chemosphere; 2007 Jun; 68(4):769-80. PubMed ID: 17292445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc compartmentation in Halimione portulacoides (L.) Aellen and some effects on leaf ultrastructure.
    Reboredo F
    Environ Sci Pollut Res Int; 2011 Aug; 19(7):2644-57. PubMed ID: 22293906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.