BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 21562980)

  • 1. Stereospecific microbial production of isoflavanones from isoflavones and isoflavone glucosides.
    Park HY; Kim M; Han J
    Appl Microbiol Biotechnol; 2011 Aug; 91(4):1173-81. PubMed ID: 21562980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of newly isolated Lactobacillus delbrueckii-like strain MF-07 isolated from chicken and its role in isoflavone biotransformation.
    Iqbal MF; Zhu WY
    FEMS Microbiol Lett; 2009 Feb; 291(2):180-7. PubMed ID: 19146574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deglycosylation of puerarin and other aromatic C-glucosides by a newly isolated human intestinal bacterium.
    Braune A; Blaut M
    Environ Microbiol; 2011 Feb; 13(2):482-94. PubMed ID: 20946528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of a human intestinal bacterium capable of daidzein and genistein conversion.
    Matthies A; Blaut M; Braune A
    Appl Environ Microbiol; 2009 Mar; 75(6):1740-4. PubMed ID: 19139227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium.
    Wang XL; Hur HG; Lee JH; Kim KT; Kim SI
    Appl Environ Microbiol; 2005 Jan; 71(1):214-9. PubMed ID: 15640190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of equol from daidzein by gram-positive rod-shaped bacterium isolated from rat intestine.
    Minamida K; Tanaka M; Abe A; Sone T; Tomita F; Hara H; Asano K
    J Biosci Bioeng; 2006 Sep; 102(3):247-50. PubMed ID: 17046543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deglycosylation of isoflavone C-glycosides by newly isolated human intestinal bacteria.
    Kim M; Lee J; Han J
    J Sci Food Agric; 2015 Jul; 95(9):1925-31. PubMed ID: 25199800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of succinyl genistin and succinyl daidzin by Bacillus species.
    Park CU; Jeong MK; Park MH; Yeu J; Park MS; Kim MJ; Ahn SM; Chang PS; Lee J
    J Food Sci; 2010; 75(1):C128-33. PubMed ID: 20492143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clostridium saccharogumia sp. nov. and Lactonifactor longoviformis gen. nov., sp. nov., two novel human faecal bacteria involved in the conversion of the dietary phytoestrogen secoisolariciresinol diglucoside.
    Clavel T; Lippman R; Gavini F; Doré J; Blaut M
    Syst Appl Microbiol; 2007 Jan; 30(1):16-26. PubMed ID: 17196483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fervidicola ferrireducens gen. nov., sp. nov., a thermophilic anaerobic bacterium from geothermal waters of the Great Artesian Basin, Australia.
    Ogg CD; Patel BK
    Int J Syst Evol Microbiol; 2009 May; 59(Pt 5):1100-7. PubMed ID: 19406800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of an isoflavone-metabolizing, Clostridium-like bacterium, strain TM-40, from human faeces.
    Tamura M; Tsushida T; Shinohara K
    Anaerobe; 2007 Feb; 13(1):32-5. PubMed ID: 17113326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir.
    Jeanthon C; Reysenbach AL; L'Haridon S; Gambacorta A; Pace NR; Glénat P; Prieur D
    Arch Microbiol; 1995 Aug; 164(2):91-7. PubMed ID: 8588738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbiomic analysis of the bifidobacterial population in the human distal gut.
    Turroni F; Marchesi JR; Foroni E; Gueimonde M; Shanahan F; Margolles A; van Sinderen D; Ventura M
    ISME J; 2009 Jun; 3(6):745-51. PubMed ID: 19295640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of isoflavone glucosides to aglycones in soymilk by fermentation with lactic acid bacteria.
    Chun J; Kim GM; Lee KW; Choi ID; Kwon GH; Park JY; Jeong SJ; Kim JS; Kim JH
    J Food Sci; 2007 Mar; 72(2):M39-44. PubMed ID: 17995840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasma profiling of intact isoflavone metabolites by high-performance liquid chromatography and mass spectrometric identification of flavone glycosides daidzin and genistin in human plasma after administration of kinako.
    Hosoda K; Furuta T; Yokokawa A; Ogura K; Hiratsuka A; Ishii K
    Drug Metab Dispos; 2008 Aug; 36(8):1485-95. PubMed ID: 18443032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and identification of equol-producing bacterial strains from cultures of pig faeces.
    Yu ZT; Yao W; Zhu WY
    FEMS Microbiol Lett; 2008 May; 282(1):73-80. PubMed ID: 18328079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial communities and metabolic activity of faecal cultures from equol producer and non-producer menopausal women under treatment with soy isoflavones.
    Guadamuro L; Dohrmann AB; Tebbe CC; Mayo B; Delgado S
    BMC Microbiol; 2017 Apr; 17(1):93. PubMed ID: 28415978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A process for high-efficiency isoflavone deglycosylation using Bacillus subtilis natto NTU-18.
    Kuo LC; Wu RY; Lee KT
    Appl Microbiol Biotechnol; 2012 Jun; 94(5):1181-8. PubMed ID: 22350317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of biologically produced ferrihydrite for the isolation of novel iron-reducing bacteria.
    Straub KL; Hanzlik M; Buchholz-Cleven BE
    Syst Appl Microbiol; 1998 Aug; 21(3):442-9. PubMed ID: 9779609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentation of soymilk by Lactobacillus acidipiscis isolated from Chinese stinky tofu capable of efficiently biotransforming isoflavone glucosides to dihydrodaidzein and dihydrogenistein.
    Guo X; Zang X; Dou SJ; Wang DY; Wang XL
    J Sci Food Agric; 2022 Dec; 102(15):7221-7230. PubMed ID: 35730767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.