BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 21563305)

  • 1. Evaluation of spinal instrumentation rod bending characteristics for in-situ contouring.
    Noshchenko A; Xianfeng Y; Armour GA; Baldini T; Patel VV; Ayers R; Burger E
    J Biomed Mater Res B Appl Biomater; 2011 Jul; 98(1):192-200. PubMed ID: 21563305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of Contouring on Fatigue Strength of Spinal Rods: Is it Okay to Re-bend and Which Materials Are Best?
    Slivka MA; Fan YK; Eck JC
    Spine Deform; 2013 Nov; 1(6):395-400. PubMed ID: 27927364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of rod contouring on spinal construct fatigue strength.
    Lindsey C; Deviren V; Xu Z; Yeh RF; Puttlitz CM
    Spine (Phila Pa 1976); 2006 Jul; 31(15):1680-7. PubMed ID: 16816763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Rod Contouring on Rod Strength and Stiffness in Spine Surgery.
    Demura S; Murakami H; Hayashi H; Kato S; Yoshioka K; Yokogawa N; Ishii T; Igarashi T; Fang X; Tsuchiya H
    Orthopedics; 2015 Jun; 38(6):e520-3. PubMed ID: 26091226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical Analysis of Notch-Free Pre-Bent Rods for Spinal Deformity Surgery.
    Yamada K; Sudo H; Iwasaki N; Chiba A
    Spine (Phila Pa 1976); 2020 Mar; 45(6):E312-E318. PubMed ID: 31574057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spine rod straightening as a possible cause for revision.
    Ayers R; Hayne M; Burger E
    J Mater Sci Mater Med; 2017 Aug; 28(8):123. PubMed ID: 28698941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermomechanical effects of spine surgery rods composed of different metals and alloys.
    Noshchenko A; Patel VV; Baldini T; Yun L; Lindley EM; Burger EL
    Spine (Phila Pa 1976); 2011 May; 36(11):870-8. PubMed ID: 20739915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of pre-contoured and in situ contoured rods on the mechanical strength and durability of posterior cervical instrumentation: a finite-element analysis and scanning electron microscopy investigation.
    Kim KD; Panchal R; Moldavsky M; Wang W; Bucklen BS
    Spine Deform; 2020 Aug; 8(4):569-576. PubMed ID: 32430793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Would CoCr rods provide better correctional forces than stainless steel or titanium for rigid scoliosis curves?
    Serhan H; Mhatre D; Newton P; Giorgio P; Sturm P
    J Spinal Disord Tech; 2013 Apr; 26(2):E70-4. PubMed ID: 22832558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bending springback behavior related to deformation-induced phase transformations in Ti-12Cr and Ti-29Nb-13Ta-4.6Zr alloys for spinal fixation applications.
    Liu H; Niinomi M; Nakai M; Hieda J; Cho K
    J Mech Behav Biomed Mater; 2014 Jun; 34():66-74. PubMed ID: 24561725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effectiveness of transfixation and length of instrumentation on titanium and stainless steel transpedicular spine implants.
    Korovessis P; Baikousis A; Deligianni D; Mysirlis Y; Soucacos P
    J Spinal Disord; 2001 Apr; 14(2):109-17. PubMed ID: 11285422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Notch sensitivity of titanium alloy, commercially pure titanium, and stainless steel spinal implants.
    Dick JC; Bourgeault CA
    Spine (Phila Pa 1976); 2001 Aug; 26(15):1668-72. PubMed ID: 11474353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deformation-induced ω phase in modified Ti-29Nb-13Ta-4.6Zr alloy by Cr addition.
    Li Q; Niinomi M; Hieda J; Nakai M; Cho K
    Acta Biomater; 2013 Aug; 9(8):8027-35. PubMed ID: 23624220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern?
    Serhan H; Slivka M; Albert T; Kwak SD
    Spine J; 2004; 4(4):379-87. PubMed ID: 15246296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Titanium versus stainless steel for anterior spinal fusions: an analysis of rod stress as a predictor of rod breakage during physiologic loading in a bovine model.
    Wedemeyer M; Parent S; Mahar A; Odell T; Swimmer T; Newton P
    Spine (Phila Pa 1976); 2007 Jan; 32(1):42-8. PubMed ID: 17202891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Springback Analysis for Warm Bending of Titanium Tube Based on Coupled Thermal-Mechanical Simulation.
    Li G; He Z; Ma J; Yang H; Li H
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of localized cold work on the heating characteristics of thermal therapy implants.
    Le UT; Tucker RD; Park JB
    J Biomed Mater Res; 2002; 63(1):24-30. PubMed ID: 11787025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Offset laminar hooks decrease bending moments of pedicle screws during in situ contouring.
    Yerby SA; Ehteshami JR; McLain RF
    Spine (Phila Pa 1976); 1997 Feb; 22(4):376-81. PubMed ID: 9055363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fatigue life of contoured cobalt chrome posterior spinal fusion rods.
    Nguyen TQ; Buckley JM; Ames C; Deviren V
    Proc Inst Mech Eng H; 2011 Feb; 225(2):194-8. PubMed ID: 21428153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanics of polyaryletherketone rod composites and titanium rods for posterior lumbosacral instrumentation. Presented at the 2010 Joint Spine Section Meeting. Laboratory investigation.
    Bruner HJ; Guan Y; Yoganandan N; Pintar FA; Maiman DJ; Slivka MA
    J Neurosurg Spine; 2010 Dec; 13(6):766-72. PubMed ID: 21121756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.