These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21563578)

  • 1. Burn severity influences postfire CO2 exchange in arctic tundra.
    Rocha AV; Shaver GR
    Ecol Appl; 2011 Mar; 21(2):477-89. PubMed ID: 21563578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling carbon-nutrient interactions during the early recovery of tundra after fire.
    Jiang Y; Rastetter EB; Rocha AV; Pearce AR; Kwiatkowski BL; Shaver GR
    Ecol Appl; 2015 Sep; 25(6):1640-52. PubMed ID: 26552271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fire severity effects on soil carbon and nutrients and microbial processes in a Siberian larch forest.
    Ludwig SM; Alexander HD; Kielland K; Mann PJ; Natali SM; Ruess RW
    Glob Chang Biol; 2018 Dec; 24(12):5841-5852. PubMed ID: 30230664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Net ecosystem exchange of CO2 with rapidly changing high Arctic landscapes.
    Emmerton CA; St Louis VL; Humphreys ER; Gamon JA; Barker JD; Pastorello GZ
    Glob Chang Biol; 2016 Mar; 22(3):1185-200. PubMed ID: 26279166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling long-term changes in tundra carbon balance following wildfire, climate change, and potential nutrient addition.
    Jiang Y; Rastetter EB; Shaver GR; Rocha AV; Zhuang Q; Kwiatkowski BL
    Ecol Appl; 2017 Jan; 27(1):105-117. PubMed ID: 27898193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The response of Arctic vegetation and soils following an unusually severe tundra fire.
    Bret-Harte MS; Mack MC; Shaver GR; Huebner DC; Johnston M; Mojica CA; Pizano C; Reiskind JA
    Philos Trans R Soc Lond B Biol Sci; 2013 Aug; 368(1624):20120490. PubMed ID: 23836794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Greater deciduous shrub abundance extends tundra peak season and increases modeled net CO2 uptake.
    Sweet SK; Griffin KL; Steltzer H; Gough L; Boelman NT
    Glob Chang Biol; 2015 Jun; 21(6):2394-409. PubMed ID: 25556338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growing season and spatial variations of carbon fluxes of Arctic and boreal ecosystems in Alaska (USA).
    Ueyama M; Iwata H; Harazono Y; Euskirchen ES; Oechel WC; Zona D
    Ecol Appl; 2013 Dec; 23(8):1798-816. PubMed ID: 24555310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying fire severity, carbon, and nitrogen emissions in Alaska's boreal forest.
    Boby LA; Schuur EA; Mack MC; Verbyla D; Johnstone JF
    Ecol Appl; 2010 Sep; 20(6):1633-47. PubMed ID: 20945764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon loss from an unprecedented Arctic tundra wildfire.
    Mack MC; Bret-Harte MS; Hollingsworth TN; Jandt RR; Schuur EA; Shaver GR; Verbyla DL
    Nature; 2011 Jul; 475(7357):489-92. PubMed ID: 21796209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical upscaling of ecosystem CO
    Virkkala AM; Aalto J; Rogers BM; Tagesson T; Treat CC; Natali SM; Watts JD; Potter S; Lehtonen A; Mauritz M; Schuur EAG; Kochendorfer J; Zona D; Oechel W; Kobayashi H; Humphreys E; Goeckede M; Iwata H; Lafleur PM; Euskirchen ES; Bokhorst S; Marushchak M; Martikainen PJ; Elberling B; Voigt C; Biasi C; Sonnentag O; Parmentier FW; Ueyama M; Celis G; St Louis VL; Emmerton CA; Peichl M; Chi J; Järveoja J; Nilsson MB; Oberbauer SF; Torn MS; Park SJ; Dolman H; Mammarella I; Chae N; Poyatos R; López-Blanco E; Christensen TR; Kwon MJ; Sachs T; Holl D; Luoto M
    Glob Chang Biol; 2021 Sep; 27(17):4040-4059. PubMed ID: 33913236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon uptake in Eurasian boreal forests dominates the high-latitude net ecosystem carbon budget.
    Watts JD; Farina M; Kimball JS; Schiferl LD; Liu Z; Arndt KA; Zona D; Ballantyne A; Euskirchen ES; Parmentier FW; Helbig M; Sonnentag O; Tagesson T; Rinne J; Ikawa H; Ueyama M; Kobayashi H; Sachs T; Nadeau DF; Kochendorfer J; Jackowicz-Korczynski M; Virkkala A; Aurela M; Commane R; Byrne B; Birch L; Johnson MS; Madani N; Rogers B; Du J; Endsley A; Savage K; Poulter B; Zhang Z; Bruhwiler LM; Miller CE; Goetz S; Oechel WC
    Glob Chang Biol; 2023 Apr; 29(7):1870-1889. PubMed ID: 36647630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alleviation of nutrient co-limitation induces regime shifts in post-fire community composition and productivity in Arctic tundra.
    Klupar I; Rocha AV; Rastetter EB
    Glob Chang Biol; 2021 Jul; 27(14):3324-3335. PubMed ID: 33960082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impacts of burn severity on short-term postfire vegetation recovery, surface albedo, and land surface temperature in California ecoregions.
    Rother DE; De Sales F; Stow D; McFadden J
    PLoS One; 2022; 17(11):e0274428. PubMed ID: 36327287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Satellite microwave detection of boreal forest recovery from the extreme 2004 wildfires in Alaska and Canada.
    Jones MO; Kimball JS; Jones LA
    Glob Chang Biol; 2013 Oct; 19(10):3111-22. PubMed ID: 23749682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postfire response of flood-regenerating riparian vegetation in a semi-arid landscape.
    Pettit NE; Naiman RJ
    Ecology; 2007 Aug; 88(8):2094-104. PubMed ID: 17824440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of net ecosystem carbon exchange estimation in a mixed temperate forest using field eddy covariance and MODIS data.
    Wang Y; Tang X; Yu L; Hou X; Munger JW
    Springerplus; 2016; 5():491. PubMed ID: 27186455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tundra wildfire triggers sustained lateral nutrient loss in Alaskan Arctic.
    Abbott BW; Rocha AV; Shogren A; Zarnetske JP; Iannucci F; Bowden WB; Bratsman SP; Patch L; Watts R; Fulweber R; Frei RJ; Huebner AM; Ludwig SM; Carling GT; O'Donnell JA
    Glob Chang Biol; 2021 Apr; 27(7):1408-1430. PubMed ID: 33394532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vegetation structure parameters determine high burn severity likelihood in different ecosystem types: A case study in a burned Mediterranean landscape.
    Fernández-Guisuraga JM; Suárez-Seoane S; García-Llamas P; Calvo L
    J Environ Manage; 2021 Jun; 288():112462. PubMed ID: 33831636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of landscape pattern and vegetation type on the fire regime of a mesic savanna in Mali.
    Laris P; Jo A; Wechsler SP
    J Environ Manage; 2018 Dec; 227():134-145. PubMed ID: 30172932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.