These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
384 related articles for article (PubMed ID: 21563818)
1. Remediation of a marine shore tailings deposit and the importance of water-rock interaction on element cycling in the coastal aquifer. Dold B; Diaby N; Spangenberg JE Environ Sci Technol; 2011 Jun; 45(11):4876-83. PubMed ID: 21563818 [TBL] [Abstract][Full Text] [Related]
2. Temporal evolution of bacterial communities associated with the in situ wetland-based remediation of a marine shore porphyry copper tailings deposit. Diaby N; Dold B; Rohrbach E; Holliger C; Rossi P Sci Total Environ; 2015 Nov; 533():110-21. PubMed ID: 26151655 [TBL] [Abstract][Full Text] [Related]
3. Geochemical and environmental controls on the genesis of soluble efflorescent salts in coastal mine tailings deposits: a discussion based on reactive transport modeling. Bea SA; Ayora C; Carrera J; Saaltink MW; Dold B J Contam Hydrol; 2010 Jan; 111(1-4):65-82. PubMed ID: 20079553 [TBL] [Abstract][Full Text] [Related]
4. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China. Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934 [TBL] [Abstract][Full Text] [Related]
5. Distribution and variability of redox zones controlling spatial variability of arsenic in the Mississippi River Valley alluvial aquifer, southeastern Arkansas. Sharif MU; Davis RK; Steele KF; Kim B; Hays PD; Kresse TM; Fazio JA J Contam Hydrol; 2008 Jul; 99(1-4):49-67. PubMed ID: 18486990 [TBL] [Abstract][Full Text] [Related]
6. Effects of a reactive barrier and aquifer geology on metal distribution and mobility in a mine drainage impacted aquifer. Doerr NA; Ptacek CJ; Blowes DW J Contam Hydrol; 2005 Jun; 78(1-2):1-25. PubMed ID: 15949605 [TBL] [Abstract][Full Text] [Related]
7. Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates - evidence from the Chaco-Pampean plain (Argentina). Nicolli HB; Bundschuh J; García JW; Falcón CM; Jean JS Water Res; 2010 Nov; 44(19):5589-604. PubMed ID: 21035830 [TBL] [Abstract][Full Text] [Related]
8. Arsenic and major cation hydrogeochemistry of the Central Victorian (Australia) surface waters. Sultan K; Dowling K J Environ Sci (China); 2006; 18(1):184-92. PubMed ID: 20050571 [TBL] [Abstract][Full Text] [Related]
9. Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh. Reza AH; Jean JS; Lee MK; Liu CC; Bundschuh J; Yang HJ; Lee JF; Lee YC Water Res; 2010 Nov; 44(19):5556-74. PubMed ID: 20875661 [TBL] [Abstract][Full Text] [Related]
10. Sorption and redox processes controlling arsenic fate and transport in a stream impacted by acid mine drainage. Casiot C; Lebrun S; Morin G; Bruneel O; Personné JC; Elbaz-Poulichet F Sci Total Environ; 2005 Jul; 347(1-3):122-30. PubMed ID: 16084973 [TBL] [Abstract][Full Text] [Related]
11. Immobilization of arsenic in a tailings material by ferrous iron treatment. Seidel H; Görsch K; Amstätter K; Mattusch J Water Res; 2005 Oct; 39(17):4073-82. PubMed ID: 16182337 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the potential of indigenous calcareous shale for neutralization and removal of arsenic and heavy metals from acid mine drainage in the Taxco mining area, Mexico. Romero FM; Núñez L; Gutiérrez ME; Armienta MA; Ceniceros-Gómez AE Arch Environ Contam Toxicol; 2011 Feb; 60(2):191-203. PubMed ID: 20523977 [TBL] [Abstract][Full Text] [Related]
13. Biogeochemistry at a wetland sediment-alluvial aquifer interface in a landfill leachate plume. Lorah MM; Cozzarelli IM; Böhlke JK J Contam Hydrol; 2009 Apr; 105(3-4):99-117. PubMed ID: 19136178 [TBL] [Abstract][Full Text] [Related]
14. Distribution of metals and arsenic in soils of central victoria (creswick-ballarat), australia. Sultan K Arch Environ Contam Toxicol; 2007 Apr; 52(3):339-46. PubMed ID: 17253097 [TBL] [Abstract][Full Text] [Related]
15. Processes releasing arsenic to groundwater in the Caldes de Malavella geothermal area, NE Spain. Piqué A; Grandia F; Canals A Water Res; 2010 Nov; 44(19):5618-30. PubMed ID: 20684972 [TBL] [Abstract][Full Text] [Related]
16. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers. Rango T; Vengosh A; Dwyer G; Bianchini G Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878 [TBL] [Abstract][Full Text] [Related]
17. Element flows associated with marine shore mine tailings deposits. Dold B Environ Sci Technol; 2006 Feb; 40(3):752-8. PubMed ID: 16509314 [TBL] [Abstract][Full Text] [Related]
18. Groundwater derived arsenic in high carbonate wetland soils: sources, sinks, and mobility. Bauer M; Fulda B; Blodau C Sci Total Environ; 2008 Aug; 401(1-3):109-20. PubMed ID: 18495216 [TBL] [Abstract][Full Text] [Related]
19. Mineralogical and geochemical controls of arsenic speciation and mobility under different redox conditions in soil, sediment and water at the Mokrsko-West gold deposit, Czech Republic. Drahota P; Rohovec J; Filippi M; Mihaljevic M; Rychlovský P; Cervený V; Pertold Z Sci Total Environ; 2009 May; 407(10):3372-84. PubMed ID: 19217143 [TBL] [Abstract][Full Text] [Related]
20. Preliminary evaluation of a constructed wetland for treating extremely alkaline (pH 12) steel slag drainage. Mayes WM; Aumônier J; Jarvis AP Water Sci Technol; 2009; 59(11):2253-63. PubMed ID: 19494466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]