These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 2156391)
1. Intracellular and extracellular levels of cyclic AMP during the cell cycle of Saccharomyces cerevisiae. Smith ME; Dickinson JR; Wheals AE Yeast; 1990; 6(1):53-60. PubMed ID: 2156391 [TBL] [Abstract][Full Text] [Related]
2. Cyclic AMP mediates the cell cycle dynamics of energy metabolism in Saccharomyces cerevisiae. Müller D; Exler S; Aguilera-Vázquez L; Guerrero-Martín E; Reuss M Yeast; 2003 Mar; 20(4):351-67. PubMed ID: 12627401 [TBL] [Abstract][Full Text] [Related]
3. Cyclic AMP controls the switch between division cycle and resting state programs in response to ammonium availability in Saccharomyces cerevisiae. Boy-Marcotte E; Garreau H; Jacquet M Yeast; 1987 Jun; 3(2):85-93. PubMed ID: 2849258 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of uridine 5'-eicosylphosphate as a stimulant of cyclic AMP-dependent cellular function. Yutani M; Ogita A; Fujita K; Usuki Y; Tanaka T Gen Physiol Biophys; 2011 Mar; 30(1):106-9. PubMed ID: 21460419 [TBL] [Abstract][Full Text] [Related]
5. The high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae is the major determinant of cAMP levels in stationary phase: involvement of different branches of the Ras-cyclic AMP pathway in stress responses. Park JI; Grant CM; Dawes IW Biochem Biophys Res Commun; 2005 Feb; 327(1):311-9. PubMed ID: 15629464 [TBL] [Abstract][Full Text] [Related]
6. [Relation of fluctuations in the physiological traits of a continuous Saccharomyces cerevisiae culture to the cell division cycle]. Ivanitskaia IuG; Petrikevich Sb Mikrobiologiia; 1987; 56(5):888-9. PubMed ID: 3329286 [TBL] [Abstract][Full Text] [Related]
7. [Regulation of cAMP cascade by yeast RAS genes]. Uno I Gan To Kagaku Ryoho; 1986 Mar; 13(3 Pt 2):849-53. PubMed ID: 3008666 [TBL] [Abstract][Full Text] [Related]
8. In Saccharomyces cerevisiae an unbalanced level of tyrosine phosphorylation down-regulates the Ras/PKA pathway. Magherini F; Busti S; Gamberi T; Sacco E; Raugei G; Manao G; Ramponi G; Modesti A; Vanoni M Int J Biochem Cell Biol; 2006 Mar; 38(3):444-60. PubMed ID: 16297653 [TBL] [Abstract][Full Text] [Related]
9. Stage-dependent density effect in the cell cycle of budding yeast. Tainaka K; Yoshimura J; Ushimaru T J Theor Biol; 2006 Oct; 242(3):736-42. PubMed ID: 16765991 [TBL] [Abstract][Full Text] [Related]
10. Cell cycle and growth regulation in RAS2 mutant cells of Saccharomyces cerevisiae. Baroni MD; Marconi G; Monti P; Alberghina L Ital J Biochem; 1993; 42(6):373-87. PubMed ID: 8144346 [TBL] [Abstract][Full Text] [Related]
11. PKA from Saccharomyces cerevisiae can be activated by cyclic AMP and cyclic GMP. Cytryńska M; Wojda I; Frajnt M; Jakubowicz T Can J Microbiol; 1999 Jan; 45(1):31-7. PubMed ID: 10349718 [TBL] [Abstract][Full Text] [Related]
12. Modeling and stochastic simulation of the Ras/cAMP/PKA pathway in the yeast Saccharomyces cerevisiae evidences a key regulatory function for intracellular guanine nucleotides pools. Cazzaniga P; Pescini D; Besozzi D; Mauri G; Colombo S; Martegani E J Biotechnol; 2008 Feb; 133(3):377-85. PubMed ID: 18023904 [TBL] [Abstract][Full Text] [Related]
13. Repression of growth-regulated G1 cyclin expression by cyclic AMP in budding yeast. Baroni MD; Monti P; Alberghina L Nature; 1994 Sep; 371(6495):339-42. PubMed ID: 8090203 [TBL] [Abstract][Full Text] [Related]
14. Autophagic death after cell cycle arrest at the restrictive temperature in temperature-sensitive cell division cycle and secretory mutants of the yeast Saccharomyces cerevisiae. Motizuki M; Yokota S; Tsurugi K Eur J Cell Biol; 1995 Nov; 68(3):275-87. PubMed ID: 8603680 [TBL] [Abstract][Full Text] [Related]
15. Induction of apoptosis by an inhibitor of cAMP-specific PDE in malignant murine carcinoma cells overexpressing PDE activity in comparison to their nonmalignant counterparts. Marko D; Romanakis K; Zankl H; Fürstenberger G; Steinbauer B; Eisenbrand G Cell Biochem Biophys; 1998; 28(2-3):75-101. PubMed ID: 9515161 [TBL] [Abstract][Full Text] [Related]
16. [Changes in cAMP levels in bacterial cells during the cell cycle]. Lazareva AV; Shiian RB; Evtodienko IuV Biokhimiia; 1987 Sep; 52(9):1469-73. PubMed ID: 2823913 [TBL] [Abstract][Full Text] [Related]
17. Genetic analysis of the role of cAMP in yeast. Matsumoto K; Uno I; Ishikawa T Yeast; 1985 Sep; 1(1):15-24. PubMed ID: 2851898 [No Abstract] [Full Text] [Related]
18. Deletion of SFI1, a novel suppressor of partial Ras-cAMP pathway deficiency in the yeast Saccharomyces cerevisiae, causes G(2) arrest. Ma P; Winderickx J; Nauwelaers D; Dumortier F; De Doncker A; Thevelein JM; Van Dijck P Yeast; 1999 Aug; 15(11):1097-109. PubMed ID: 10455233 [TBL] [Abstract][Full Text] [Related]
19. The role of cAMP in controlling yeast cell division. Ishikawa T; Uno I; Matsumoto K Bioessays; 1986 Feb; 4(2):52-6. PubMed ID: 3024635 [No Abstract] [Full Text] [Related]
20. Transient increase in intracellular concentration of adenosine 3':5'-cyclic monophosphate results in morphological and biochemical differentiation of C6 glioma cells in culture. Sharma SK; Raj AB J Neurosci Res; 1987; 17(2):135-41. PubMed ID: 3035202 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]