BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 21565190)

  • 1. Selective photothermal efficiency of citrate capped gold nanoparticles for destruction of cancer cells.
    Raji V; Kumar J; Rejiya CS; Vibin M; Shenoi VN; Abraham A
    Exp Cell Res; 2011 Aug; 317(14):2052-8. PubMed ID: 21565190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser immunotherapy with gold nanorods causes selective killing of tumour cells.
    C S R; Kumar J; V R; M V; Abraham A
    Pharmacol Res; 2012 Feb; 65(2):261-9. PubMed ID: 22115972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles.
    El-Sayed IH; Huang X; El-Sayed MA
    Cancer Lett; 2006 Jul; 239(1):129-35. PubMed ID: 16198049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods.
    Huang YF; Sefah K; Bamrungsap S; Chang HT; Tan W
    Langmuir; 2008 Oct; 24(20):11860-5. PubMed ID: 18817428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative efficiencies of photothermal destruction of malignant cells using antibody-coated silica@Au nanoshells, hollow Au/Ag nanospheres and Au nanorods.
    Cheng FY; Chen CT; Yeh CS
    Nanotechnology; 2009 Oct; 20(42):425104. PubMed ID: 19779243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Layer-by-layer self-assembled mutilayer films of gold nanoparticles for surface-assisted laser desorption/ionization mass spectrometry.
    Kawasaki H; Sugitani T; Watanabe T; Yonezawa T; Moriwaki H; Arakawa R
    Anal Chem; 2008 Oct; 80(19):7524-33. PubMed ID: 18778032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy.
    Van de Broek B; Devoogdt N; D'Hollander A; Gijs HL; Jans K; Lagae L; Muyldermans S; Maes G; Borghs G
    ACS Nano; 2011 Jun; 5(6):4319-28. PubMed ID: 21609027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large payloads of gold nanoparticles into the polyamine network core of stimuli-responsive PEGylated nanogels for selective and noninvasive cancer photothermal therapy.
    Nakamura T; Tamura A; Murotani H; Oishi M; Jinji Y; Matsuishi K; Nagasaki Y
    Nanoscale; 2010 May; 2(5):739-46. PubMed ID: 20648319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanoparticle-mediated generation of reactive oxygen species during plasmonic photothermal therapy: a comparative study for different particle sizes, shapes, and surface conjugations.
    Guerrero-Florez V; Mendez-Sanchez SC; Patrón-Soberano OA; Rodríguez-González V; Blach D; Martínez O F
    J Mater Chem B; 2020 Apr; 8(14):2862-2875. PubMed ID: 32186317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitive and selective SERS probe for trivalent chromium detection using citrate attached gold nanoparticles.
    Ye Y; Liu H; Yang L; Liu J
    Nanoscale; 2012 Oct; 4(20):6442-8. PubMed ID: 22955571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ detection of live cancer cells by using bioprobes based on Au nanoparticles.
    Yang J; Eom K; Lim EK; Park J; Kang Y; Yoon DS; Na S; Koh EK; Suh JS; Huh YM; Kwon TY; Haam S
    Langmuir; 2008 Nov; 24(21):12112-5. PubMed ID: 18826263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer modeling of the optical properties and heating of spherical gold and silica-gold nanoparticles for laser combined imaging and photothermal treatment.
    Pustovalov V; Astafyeva L; Jean B
    Nanotechnology; 2009 Jun; 20(22):225105. PubMed ID: 19433875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive radiofrequency field-induced hyperthermic cytotoxicity in human cancer cells using cetuximab-targeted gold nanoparticles.
    Curley SA; Cherukuri P; Briggs K; Patra CR; Upton M; Dolson E; Mukherjee P
    J Exp Ther Oncol; 2008; 7(4):313-26. PubMed ID: 19227011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological responses of Legionella pneumophila biofilm to nanoparticle exposure.
    Stojak AR; Raftery T; Klaine SJ; McNealy TL
    Nanotoxicology; 2011 Dec; 5(4):730-42. PubMed ID: 21294606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold hybrid nanoparticles for targeted phototherapy and cancer imaging.
    Kirui DK; Rey DA; Batt CA
    Nanotechnology; 2010 Mar; 21(10):105105. PubMed ID: 20154383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size-dependent effect of cystine/citric acid-capped confeito-like gold nanoparticles on cellular uptake and photothermal cancer therapy.
    Saw WS; Ujihara M; Chong WY; Voon SH; Imae T; Kiew LV; Lee HB; Sim KS; Chung LY
    Colloids Surf B Biointerfaces; 2018 Jan; 161():365-374. PubMed ID: 29101882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface science of DNA adsorption onto citrate-capped gold nanoparticles.
    Zhang X; Servos MR; Liu J
    Langmuir; 2012 Feb; 28(8):3896-902. PubMed ID: 22272583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold nanoparticle probes: design and in vitro applications in cancer cell culture.
    Unak G; Ozkaya F; Medine EI; Kozgus O; Sakarya S; Bekis R; Unak P; Timur S
    Colloids Surf B Biointerfaces; 2012 Feb; 90():217-26. PubMed ID: 22070896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shuttling gold nanoparticles into tumoral cells with an amphipathic proline-rich peptide.
    Pujals S; Bastús NG; Pereiro E; López-Iglesias C; Puntes VF; Kogan MJ; Giralt E
    Chembiochem; 2009 Apr; 10(6):1025-31. PubMed ID: 19322842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-Induced aggregation of gold nanoparticles for photothermal cancer therapy.
    Nam J; Won N; Jin H; Chung H; Kim S
    J Am Chem Soc; 2009 Sep; 131(38):13639-45. PubMed ID: 19772360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.