These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 21565696)

  • 61. Chemical informatics: using molecular shape descriptors in structure-based drug design.
    Jennings A
    Methods Mol Biol; 2012; 841():235-50. PubMed ID: 22222455
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Small-molecule stabilization of protein-protein interactions: an underestimated concept in drug discovery?
    Thiel P; Kaiser M; Ottmann C
    Angew Chem Int Ed Engl; 2012 Feb; 51(9):2012-8. PubMed ID: 22308055
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Computational methods and tools for binding site recognition between proteins and small molecules: from classical geometrical approaches to modern machine learning strategies.
    Macari G; Toti D; Polticelli F
    J Comput Aided Mol Des; 2019 Oct; 33(10):887-903. PubMed ID: 31628659
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Drug effect prediction by polypharmacology-based interaction profiling.
    Simon Z; Peragovics A; Vigh-Smeller M; Csukly G; Tombor L; Yang Z; Zahoránszky-Kohalmi G; Végner L; Jelinek B; Hári P; Hetényi C; Bitter I; Czobor P; Málnási-Csizmadia A
    J Chem Inf Model; 2012 Jan; 52(1):134-45. PubMed ID: 22098080
    [TBL] [Abstract][Full Text] [Related]  

  • 65. HotPatch: a statistical approach to finding biologically relevant features on protein surfaces.
    Pettit FK; Bare E; Tsai A; Bowie JU
    J Mol Biol; 2007 Jun; 369(3):863-79. PubMed ID: 17451744
    [TBL] [Abstract][Full Text] [Related]  

  • 66. ProMateus--an open research approach to protein-binding sites analysis.
    Neuvirth H; Heinemann U; Birnbaum D; Tishby N; Schreiber G
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W543-8. PubMed ID: 17488838
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Predicting binding sites of hydrolase-inhibitor complexes by combining several methods.
    Sen TZ; Kloczkowski A; Jernigan RL; Yan C; Honavar V; Ho KM; Wang CZ; Ihm Y; Cao H; Gu X; Dobbs D
    BMC Bioinformatics; 2004 Dec; 5():205. PubMed ID: 15606919
    [TBL] [Abstract][Full Text] [Related]  

  • 68. CovPDB: a high-resolution coverage of the covalent protein-ligand interactome.
    Gao M; Moumbock AFA; Qaseem A; Xu Q; Günther S
    Nucleic Acids Res; 2022 Jan; 50(D1):D445-D450. PubMed ID: 34581813
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Computational chemical biology: identification of small molecular probes that discriminate between members of target protein families.
    Dimova D; Bajorath J
    Chem Biol Drug Des; 2012 Apr; 79(4):369-75. PubMed ID: 22171579
    [TBL] [Abstract][Full Text] [Related]  

  • 70. eFindSite: improved prediction of ligand binding sites in protein models using meta-threading, machine learning and auxiliary ligands.
    Brylinski M; Feinstein WP
    J Comput Aided Mol Des; 2013 Jun; 27(6):551-67. PubMed ID: 23838840
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Identification of protein-ligand binding sites by the level-set variational implicit-solvent approach.
    Guo Z; Li B; Cheng LT; Zhou S; McCammon JA; Che J
    J Chem Theory Comput; 2015 Feb; 11(2):753-65. PubMed ID: 25941465
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Assessment of ligand binding residue predictions in CASP8.
    López G; Ezkurdia I; Tress ML
    Proteins; 2009; 77 Suppl 9(Suppl 9):138-46. PubMed ID: 19714771
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Shaping the interaction landscape of bioactive molecules.
    Gfeller D; Michielin O; Zoete V
    Bioinformatics; 2013 Dec; 29(23):3073-9. PubMed ID: 24048355
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Computational methods for fragment-based ligand design: growing and linking.
    Bienstock RJ
    Methods Mol Biol; 2015; 1289():119-35. PubMed ID: 25709037
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Diversity selection of compounds based on 'protein affinity fingerprints' improves sampling of bioactive chemical space.
    Nguyen HP; Koutsoukas A; Mohd Fauzi F; Drakakis G; Maciejewski M; Glen RC; Bender A
    Chem Biol Drug Des; 2013 Sep; 82(3):252-66. PubMed ID: 23647865
    [TBL] [Abstract][Full Text] [Related]  

  • 76. COFACTOR: an accurate comparative algorithm for structure-based protein function annotation.
    Roy A; Yang J; Zhang Y
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W471-7. PubMed ID: 22570420
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Recognizing protein-ligand binding sites by global structural alignment and local geometry refinement.
    Roy A; Zhang Y
    Structure; 2012 Jun; 20(6):987-97. PubMed ID: 22560732
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Accurate prediction of disorder in protein chains with a comprehensive and empirically designed consensus.
    Fan X; Kurgan L
    J Biomol Struct Dyn; 2014; 32(3):448-64. PubMed ID: 23534882
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure.
    Capra JA; Laskowski RA; Thornton JM; Singh M; Funkhouser TA
    PLoS Comput Biol; 2009 Dec; 5(12):e1000585. PubMed ID: 19997483
    [TBL] [Abstract][Full Text] [Related]  

  • 80. FunFOLDQA: a quality assessment tool for protein-ligand binding site residue predictions.
    Roche DB; Buenavista MT; McGuffin LJ
    PLoS One; 2012; 7(5):e38219. PubMed ID: 22666491
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.