BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 21565856)

  • 41. Using machine learning for concept extraction on clinical documents from multiple data sources.
    Torii M; Wagholikar K; Liu H
    J Am Med Inform Assoc; 2011; 18(5):580-7. PubMed ID: 21709161
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ontology-guided feature engineering for clinical text classification.
    Garla VN; Brandt C
    J Biomed Inform; 2012 Oct; 45(5):992-8. PubMed ID: 22580178
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Segment convolutional neural networks (Seg-CNNs) for classifying relations in clinical notes.
    Luo Y; Cheng Y; Uzuner Ö; Szolovits P; Starren J
    J Am Med Inform Assoc; 2018 Jan; 25(1):93-98. PubMed ID: 29025149
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Medication information extraction with linguistic pattern matching and semantic rules.
    Spasic I; Sarafraz F; Keane JA; Nenadic G
    J Am Med Inform Assoc; 2010; 17(5):532-5. PubMed ID: 20819858
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ensembles of natural language processing systems for portable phenotyping solutions.
    Liu C; Ta CN; Rogers JR; Li Z; Lee J; Butler AM; Shang N; Kury FSP; Wang L; Shen F; Liu H; Ena L; Friedman C; Weng C
    J Biomed Inform; 2019 Dec; 100():103318. PubMed ID: 31655273
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Coreference analysis in clinical notes: a multi-pass sieve with alternate anaphora resolution modules.
    Jonnalagadda SR; Li D; Sohn S; Wu ST; Wagholikar K; Torii M; Liu H
    J Am Med Inform Assoc; 2012; 19(5):867-74. PubMed ID: 22707745
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sophia: A Expedient UMLS Concept Extraction Annotator.
    Divita G; Zeng QT; Gundlapalli AV; Duvall S; Nebeker J; Samore MH
    AMIA Annu Symp Proc; 2014; 2014():467-76. PubMed ID: 25954351
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lancet: a high precision medication event extraction system for clinical text.
    Li Z; Liu F; Antieau L; Cao Y; Yu H
    J Am Med Inform Assoc; 2010; 17(5):563-7. PubMed ID: 20819865
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Coreference resolution of medical concepts in discharge summaries by exploiting contextual information.
    Dai HJ; Chen CY; Wu CY; Lai PT; Tsai RT; Hsu WL
    J Am Med Inform Assoc; 2012; 19(5):888-96. PubMed ID: 22556185
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Community annotation experiment for ground truth generation for the i2b2 medication challenge.
    Uzuner O; Solti I; Xia F; Cadag E
    J Am Med Inform Assoc; 2010; 17(5):519-23. PubMed ID: 20819855
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Functional evaluation of out-of-the-box text-mining tools for data-mining tasks.
    Jung K; LePendu P; Iyer S; Bauer-Mehren A; Percha B; Shah NH
    J Am Med Inform Assoc; 2015 Jan; 22(1):121-31. PubMed ID: 25336595
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Second i2b2 workshop on natural language processing challenges for clinical records.
    Uzuner O
    AMIA Annu Symp Proc; 2008 Nov; ():1252-3. PubMed ID: 18998924
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mining fall-related information in clinical notes: Comparison of rule-based and novel word embedding-based machine learning approaches.
    Topaz M; Murga L; Gaddis KM; McDonald MV; Bar-Bachar O; Goldberg Y; Bowles KH
    J Biomed Inform; 2019 Feb; 90():103103. PubMed ID: 30639392
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of MetaMap and cTAKES for entity extraction in clinical notes.
    Reátegui R; Ratté S
    BMC Med Inform Decis Mak; 2018 Sep; 18(Suppl 3):74. PubMed ID: 30255810
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features.
    Nikfarjam A; Sarker A; O'Connor K; Ginn R; Gonzalez G
    J Am Med Inform Assoc; 2015 May; 22(3):671-81. PubMed ID: 25755127
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Natural language processing and machine learning to enable automatic extraction and classification of patients' smoking status from electronic medical records.
    Caccamisi A; Jørgensen L; Dalianis H; Rosenlund M
    Ups J Med Sci; 2020 Nov; 125(4):316-324. PubMed ID: 32696698
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Extracting comprehensive clinical information for breast cancer using deep learning methods.
    Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q
    Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Knowledge based word-concept model estimation and refinement for biomedical text mining.
    Jimeno Yepes A; Berlanga R
    J Biomed Inform; 2015 Feb; 53():300-7. PubMed ID: 25510606
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Use of "off-the-shelf" information extraction algorithms in clinical informatics: A feasibility study of MetaMap annotation of Italian medical notes.
    Chiaramello E; Pinciroli F; Bonalumi A; Caroli A; Tognola G
    J Biomed Inform; 2016 Oct; 63():22-32. PubMed ID: 27444186
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Surrogate-assisted feature extraction for high-throughput phenotyping.
    Yu S; Chakrabortty A; Liao KP; Cai T; Ananthakrishnan AN; Gainer VS; Churchill SE; Szolovits P; Murphy SN; Kohane IS; Cai T
    J Am Med Inform Assoc; 2017 Apr; 24(e1):e143-e149. PubMed ID: 27632993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.