BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

513 related articles for article (PubMed ID: 21566157)

  • 1. Crystal structure of the maltose transporter in a pretranslocation intermediate state.
    Oldham ML; Chen J
    Science; 2011 Jun; 332(6034):1202-5. PubMed ID: 21566157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of a catalytic intermediate of the maltose transporter.
    Oldham ML; Khare D; Quiocho FA; Davidson AL; Chen J
    Nature; 2007 Nov; 450(7169):515-21. PubMed ID: 18033289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full engagement of liganded maltose-binding protein stabilizes a semi-open ATP-binding cassette dimer in the maltose transporter.
    Alvarez FJ; Orelle C; Huang Y; Bajaj R; Everly RM; Klug CS; Davidson AL
    Mol Microbiol; 2015 Dec; 98(5):878-94. PubMed ID: 26268698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allosteric transitions of the maltose transporter studied by an elastic network model.
    Li CH; Yang YX; Su JG; Liu B; Tan JJ; Zhang XY; Wang CX
    Biopolymers; 2014 Jul; 101(7):758-68. PubMed ID: 24865820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP-driven MalK dimer closure and reopening and conformational changes of the "EAA" motifs are crucial for function of the maltose ATP-binding cassette transporter (MalFGK2).
    Daus ML; Grote M; Müller P; Doebber M; Herrmann A; Steinhoff HJ; Dassa E; Schneider E
    J Biol Chem; 2007 Aug; 282(31):22387-96. PubMed ID: 17545154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleotide-free MalK drives the transition of the maltose transporter to the inward-facing conformation.
    Bao H; Duong F
    J Biol Chem; 2014 Apr; 289(14):9844-51. PubMed ID: 24526688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Both maltose-binding protein and ATP are required for nucleotide-binding domain closure in the intact maltose ABC transporter.
    Orelle C; Ayvaz T; Everly RM; Klug CS; Davidson AL
    Proc Natl Acad Sci U S A; 2008 Sep; 105(35):12837-42. PubMed ID: 18725638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmembrane signaling in the maltose ABC transporter MalFGK2-E: periplasmic MalF-P2 loop communicates substrate availability to the ATP-bound MalK dimer.
    Grote M; Polyhach Y; Jeschke G; Steinhoff HJ; Schneider E; Bordignon E
    J Biol Chem; 2009 Jun; 284(26):17521-6. PubMed ID: 19395376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maltose-binding protein effectively stabilizes the partially closed conformation of the ATP-binding cassette transporter MalFGK
    Weng J; Gu S; Gao X; Huang X; Wang W
    Phys Chem Chem Phys; 2017 Apr; 19(14):9366-9373. PubMed ID: 28267156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periplasmic loop P2 of the MalF subunit of the maltose ATP binding cassette transporter is sufficient to bind the maltose binding protein MalE.
    Jacso T; Grote M; Daus ML; Schmieder P; Keller S; Schneider E; Reif B
    Biochemistry; 2009 Mar; 48(10):2216-25. PubMed ID: 19159328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for substrate specificity in the Escherichia coli maltose transport system.
    Oldham ML; Chen S; Chen J
    Proc Natl Acad Sci U S A; 2013 Nov; 110(45):18132-7. PubMed ID: 24145421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional characterization of a maltose/maltodextrin ABC transporter comprising a single solute binding domain (MalE) fused to the transmembrane subunit MalF.
    Licht A; Bommer M; Werther T; Neumann K; Hobe C; Schneider E
    Res Microbiol; 2019; 170(1):1-12. PubMed ID: 30193862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disulfide cross-linking reveals a site of stable interaction between C-terminal regulatory domains of the two MalK subunits in the maltose transport complex.
    Samanta S; Ayvaz T; Reyes M; Shuman HA; Chen J; Davidson AL
    J Biol Chem; 2003 Sep; 278(37):35265-71. PubMed ID: 12813052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maltose binding protein (MalE) interacts with periplasmic loops P2 and P1 respectively of the MalFG subunits of the maltose ATP binding cassette transporter (MalFGK(2)) from Escherichia coli/Salmonella during the transport cycle.
    Daus ML; Berendt S; Wuttge S; Schneider E
    Mol Microbiol; 2007 Dec; 66(5):1107-22. PubMed ID: 17961142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP alone triggers the outward facing conformation of the maltose ATP-binding cassette transporter.
    Bao H; Duong F
    J Biol Chem; 2013 Feb; 288(5):3439-48. PubMed ID: 23243313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism.
    Locher KP; Lee AT; Rees DC
    Science; 2002 May; 296(5570):1091-8. PubMed ID: 12004122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternating access in maltose transporter mediated by rigid-body rotations.
    Khare D; Oldham ML; Orelle C; Davidson AL; Chen J
    Mol Cell; 2009 Feb; 33(4):528-36. PubMed ID: 19250913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling between ATP hydrolysis and protein conformational change in maltose transporter.
    Lv X; Liu H; Chen H; Gong H
    Proteins; 2017 Feb; 85(2):207-220. PubMed ID: 27616441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP hydrolysis is required to reset the ATP-binding cassette dimer into the resting-state conformation.
    Lu G; Westbrooks JM; Davidson AL; Chen J
    Proc Natl Acad Sci U S A; 2005 Dec; 102(50):17969-74. PubMed ID: 16326809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vanadate-catalyzed photocleavage of the signature motif of an ATP-binding cassette (ABC) transporter.
    Fetsch EE; Davidson AL
    Proc Natl Acad Sci U S A; 2002 Jul; 99(15):9685-90. PubMed ID: 12093921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.