These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 2156650)

  • 1. A non-invasive method of measuring concentrations of rubidium in rat skeletal muscle in vivo by 87Rb nuclear magnetic resonance spectroscopy: implications for the measurement of cation transport activity in vivo.
    Syme PD; Dixon RM; Allis JL; Aronson JK; Grahame-Smith DG; Radda GK
    Clin Sci (Lond); 1990 Mar; 78(3):303-9. PubMed ID: 2156650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for increased in vivo sodium-potassium pump activity and potassium efflux in skeletal muscle of spontaneously hypertensive rats.
    Syme PD; Dixon RM; Aronson JK; Grahame-Smith DG; Radda GK
    J Hypertens; 1990 Dec; 8(12):1161-6. PubMed ID: 1962807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 87Rb, 23Na and 31P nuclear magnetic resonance spectroscopy of the perfused rat kidney.
    Allis JL; Endre ZH; Radda GK
    Ren Physiol Biochem; 1989; 12(3):171-80. PubMed ID: 2560232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occlusion of rubidium ions by the sodium-potassium pump: its implications for the mechanism of potassium transport.
    Glynn IM; Richards DE
    J Physiol; 1982 Sep; 330():17-43. PubMed ID: 6294286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of cation transport in vivo in healthy volunteers after the oral administration of lithium carbonate.
    Wood AJ; Viswalingam A; Glue P; Aronson JK; Grahame-Smith DG
    Clin Sci (Lond); 1989 Apr; 76(4):397-402. PubMed ID: 2540932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Heavy water inhibition of alkali cation transport across the muscle membrane. II. A comparison of the action of D20 and ouabain on the sodium efflux and rubidium influx in magnesium media].
    Vereninov AA; Toropova FV; Ivakhniuk IS
    Tsitologiia; 1985 Dec; 27(12):1359-66. PubMed ID: 3003982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between K+ flux and heart rate: an 87Rb n.m.r. study.
    Snaith CD; Allis JL; Radda GK; Seymour AM
    Biochem Soc Trans; 1990 Aug; 18(4):663. PubMed ID: 2177423
    [No Abstract]   [Full Text] [Related]  

  • 8. NMR relaxation characteristics of rubidium-87 in perfused rat salivary glands.
    Steward MC; Seo Y; Murakami M; Watari H
    Proc Biol Sci; 1991 Feb; 243(1307):115-20. PubMed ID: 1676514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time course of changes in Na,K-pump concentration and passive Na,K-fluxes in skeletal muscle after administration of thyroid hormone.
    Everts ME; Clausen T; Kjeldsen K
    Prog Clin Biol Res; 1988; 268B():371-6. PubMed ID: 2851816
    [No Abstract]   [Full Text] [Related]  

  • 10. Simultaneous determination of potassium and rubidium content in yeast.
    Mulet JM; Serrano R
    Yeast; 2002 Nov; 19(15):1295-8. PubMed ID: 12402240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel assay of cell rubidium uptake using graphite furnace atomic absorption: application to rats on a magnesium-deficient diet.
    Zhen Y; Franz KB; Graves SW
    J Nutr Biochem; 2005 May; 16(5):291-6. PubMed ID: 15866229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathways of Rb+ influx and their relation to intracellular [Na+] in the perfused rat heart. A 87Rb and 23Na NMR study.
    Kupriyanov VV; Stewart LC; Xiang B; Kwak J; Deslauriers R
    Circ Res; 1995 May; 76(5):839-51. PubMed ID: 7729001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation of caesium and rubidium in vivo by red and white muscles of the rat.
    Kernan RP
    J Physiol; 1969 Sep; 204(1):195-205. PubMed ID: 5352044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rubidium transport in human erythrocyte suspensions monitored by 87Rb NMR with aqueous chemical shift reagents.
    Helpern JA; Welch KM; Halvorson HR
    NMR Biomed; 1989 Jul; 2(2):47-54. PubMed ID: 2518154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rubidium-87 magnetic resonance spectroscopy and imaging for analysis of mammalian K+ transport.
    Kupriyanov VV; Gruwel ML
    NMR Biomed; 2005 Apr; 18(2):111-24. PubMed ID: 15770627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyposmotic shock: effects on rubidium/potassium efflux in normal and ischemic rat hearts, assessed by 87Rb and 31P NMR.
    Jilkina O; Kuzio B; Kupriyanov VV
    Biochim Biophys Acta; 2003 Jan; 1637(1):20-30. PubMed ID: 12527403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water depletion, not oral sodium loading, increases levels of sodium, potassium-dependent adenosine triphosphatase inhibitors in rat plasma.
    Wellard RM; Adam WR
    Clin Sci (Lond); 1987 Jul; 73(1):87-92. PubMed ID: 3038456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of the maximum capacity for active sodium-potassium transport in rat skeletal muscle.
    Clausen T; Everts ME; Kjeldsen K
    J Physiol; 1987 Jul; 388():163-81. PubMed ID: 2443689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na(+)-K+ pump stimulation elicits recovery of contractility in K(+)-paralysed rat muscle.
    Clausen T; Andersen SL; Flatman JA
    J Physiol; 1993 Dec; 472():521-36. PubMed ID: 8145158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capillary, interstitial, and cell membrane barriers to blood-tissue transport of potassium and rubidium in mammalian skeletal muscle.
    Sheehan RM; Renkin EM
    Circ Res; 1972 May; 30(5):588-607. PubMed ID: 5026760
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.