These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 21566812)
1. Intraspecific variation in cadmium tolerance and accumulation of a high-biomass tropical tree Averrhoa carambola L.: implication for phytoextraction. Dai ZY; Shu WS; Liao B; Wan CY; Li JT J Environ Monit; 2011 Jun; 13(6):1723-9. PubMed ID: 21566812 [TBL] [Abstract][Full Text] [Related]
2. Cadmium tolerance and accumulation in cultivars of a high-biomass tropical tree (Averrhoa carambola) and its potential for phytoextraction. Li JT; Liao B; Lan CY; Ye ZH; Baker AJ; Shu WS J Environ Qual; 2010; 39(4):1262-8. PubMed ID: 20830914 [TBL] [Abstract][Full Text] [Related]
3. Phytoextraction of Cd-contaminated soil by carambola (Averrhoa carambola) in field trials. Li JT; Liao B; Dai ZY; Zhu R; Shu WS Chemosphere; 2009 Aug; 76(9):1233-9. PubMed ID: 19541343 [TBL] [Abstract][Full Text] [Related]
4. Cadmium accumulation and tolerance of mahogany (Swietenia macrophylla) seedlings for phytoextraction applications. Fan KC; Hsi HC; Chen CW; Lee HL; Hseu ZY J Environ Manage; 2011 Oct; 92(10):2818-22. PubMed ID: 21741155 [TBL] [Abstract][Full Text] [Related]
5. Cadmium contamination in orchard soils and fruit trees and its potential health risk in Guangzhou, China. Li JT; Qiu JW; Wang XW; Zhong Y; Lan CY; Shu WS Environ Pollut; 2006 Sep; 143(1):159-65. PubMed ID: 16377042 [TBL] [Abstract][Full Text] [Related]
6. Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss. Wang MY; Chen AK; Wong MH; Qiu RL; Cheng H; Ye ZH Environ Pollut; 2011 Jun; 159(6):1730-6. PubMed ID: 21411196 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of cadmium phytoremediation potential in Chinese cabbage cultivars. Liu W; Zhou Q; Zhang Z; Hua T; Cai Z J Agric Food Chem; 2011 Aug; 59(15):8324-30. PubMed ID: 21739993 [TBL] [Abstract][Full Text] [Related]
8. Inter- and intraspecific variations of cadmium accumulation of 13 leafy vegetable species in a greenhouse experiment. Wang J; Fang W; Yang Z; Yuan J; Zhu Y; Yu H J Agric Food Chem; 2007 Oct; 55(22):9118-23. PubMed ID: 17914880 [TBL] [Abstract][Full Text] [Related]
9. Effects of soil type and genotype on cadmium accumulation by rootstalk crops: implications for phytomanagement. Ding C; Zhang T; Wang X; Zhou F; Yang Y; Yin Y Int J Phytoremediation; 2014; 16(7-12):1018-30. PubMed ID: 24933899 [TBL] [Abstract][Full Text] [Related]
10. Cadmium accumulation and tolerance of two safflower cultivars in relation to photosynthesis and antioxidative enzymes. Shi G; Liu C; Cai Q; Liu Q; Hou C Bull Environ Contam Toxicol; 2010 Sep; 85(3):256-63. PubMed ID: 20640847 [TBL] [Abstract][Full Text] [Related]
11. Assessing the potential for cadmium phytoremediation with Calamagrostis epigejos: a pot experiment. Lehmann C; Rebele F Int J Phytoremediation; 2004; 6(2):169-83. PubMed ID: 15328982 [TBL] [Abstract][Full Text] [Related]
12. Assessment of the phytoextraction potential of high biomass crop plants. Hernández-Allica J; Becerril JM; Garbisu C Environ Pollut; 2008 Mar; 152(1):32-40. PubMed ID: 17644228 [TBL] [Abstract][Full Text] [Related]
13. Cadmium availability in soil and retention in oak roots: potential for phytostabilization. Domínguez MT; Madrid F; Marañón T; Murillo JM Chemosphere; 2009 Jul; 76(4):480-6. PubMed ID: 19375778 [TBL] [Abstract][Full Text] [Related]
14. Phytoextraction potential of poplar (Populus alba L. var. pyramidalis Bunge) from calcareous agricultural soils contaminated by cadmium. Hu Y; Nan Z; Jin C; Wang N; Luo H Int J Phytoremediation; 2014; 16(5):482-95. PubMed ID: 24912230 [TBL] [Abstract][Full Text] [Related]
15. Heavy metal accumulations of 24 asparagus bean cultivars grown in soil contaminated with Cd alone and with multiple metals (Cd, Pb, and Zn). Zhu Y; Yu H; Wang J; Fang W; Yuan J; Yang Z J Agric Food Chem; 2007 Feb; 55(3):1045-52. PubMed ID: 17263511 [TBL] [Abstract][Full Text] [Related]
16. Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars. Liu W; Zhou Q; An J; Sun Y; Liu R J Hazard Mater; 2010 Jan; 173(1-3):737-43. PubMed ID: 19775811 [TBL] [Abstract][Full Text] [Related]
17. Characterization of Cd translocation and accumulation in 19 maize cultivars grown on Cd-contaminated soil: implication of maize cultivar selection for minimal risk to human health and for phytoremediation. Wang A; Wang M; Liao Q; He X Environ Sci Pollut Res Int; 2016 Mar; 23(6):5410-9. PubMed ID: 26564197 [TBL] [Abstract][Full Text] [Related]
18. Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L. Ji P; Sun T; Song Y; Ackland ML; Liu Y Environ Pollut; 2011 Mar; 159(3):762-8. PubMed ID: 21185631 [TBL] [Abstract][Full Text] [Related]
19. Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Grispen VM; Nelissen HJ; Verkleij JA Environ Pollut; 2006 Nov; 144(1):77-83. PubMed ID: 16515826 [TBL] [Abstract][Full Text] [Related]
20. A comparative study of cadmium phytoextraction by accumulator and weed species. Ghosh M; Singh SP Environ Pollut; 2005 Jan; 133(2):365-71. PubMed ID: 15519467 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]