BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 21566816)

  • 1. Surface properties of hydrogenated nanodiamonds: a chemical investigation.
    Girard HA; Petit T; Perruchas S; Gacoin T; Gesset C; Arnault JC; Bergonzo P
    Phys Chem Chem Phys; 2011 Jun; 13(24):11517-23. PubMed ID: 21566816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface chemical modifications and surface reactivity of nanodiamonds hydrogenated by CVD plasma.
    Arnault JC; Petit T; Girard H; Chavanne A; Gesset C; Sennour M; Chaigneau M
    Phys Chem Chem Phys; 2011 Jun; 13(24):11481-7. PubMed ID: 21528148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermally induced alkylation of diamond.
    Hoeb M; Auernhammer M; Schoell SJ; Brandt MS; Garrido JA; Stutzmann M; Sharp ID
    Langmuir; 2010 Dec; 26(24):18862-7. PubMed ID: 21090790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanodiamond for hydrogen storage: temperature-dependent hydrogenation and charge-induced dehydrogenation.
    Lai L; Barnard AS
    Nanoscale; 2012 Feb; 4(4):1130-7. PubMed ID: 22089370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photochemical grafting of n-alkenes onto carbon surfaces: the role of photoelectron ejection.
    Colavita PE; Sun B; Tse KY; Hamers RJ
    J Am Chem Soc; 2007 Nov; 129(44):13554-65. PubMed ID: 17927179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile surface functionalization of nanodiamonds.
    Chang IP; Hwang KC; Ho JA; Lin CC; Hwu RJ; Horng JC
    Langmuir; 2010 Mar; 26(5):3685-9. PubMed ID: 19856970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Halogenation of carbon substrates for increased reactivity with alkenes.
    Lockett MR; Smith LM
    Langmuir; 2010 Nov; 26(22):16642-6. PubMed ID: 20925329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing protein activities on the lysozyme and nanodiamond complex prepared for bio applications.
    Perevedentseva E; Cai PJ; Chiu YC; Cheng CL
    Langmuir; 2011 Feb; 27(3):1085-91. PubMed ID: 21192695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic grafting of diamond nanoparticles: a versatile route to nanocrystalline diamond thin films.
    Girard HA; Perruchas S; Gesset C; Chaigneau M; Vieille L; Arnault JC; Bergonzo P; Boilot JP; Gacoin T
    ACS Appl Mater Interfaces; 2009 Dec; 1(12):2738-46. PubMed ID: 20356151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics.
    Tinwala H; Wairkar S
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():913-931. PubMed ID: 30678981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalent immobilization of protein onto a functionalized hydrogenated diamond-like carbon substrate.
    Biswas HS; Datta J; Chowdhury DP; Reddy AV; Ghosh UC; Srivastava AK; Ray NR
    Langmuir; 2010 Nov; 26(22):17413-8. PubMed ID: 20949913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilizing Constant Energy Difference between sp-Peak and C 1s Core Level in Photoelectron Spectra for Unambiguous Identification and Quantification of Diamond Phase in Nanodiamonds.
    Romanyuk O; Stehlík Š; Zemek J; Aubrechtová Dragounová K; Kromka A
    Nanomaterials (Basel); 2024 Mar; 14(7):. PubMed ID: 38607124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alkene/diamond liquid/solid interface characterization using internal photoemission spectroscopy.
    Nebel CE; Shin D; Takeuchi D; Yamamoto T; Watanabe H; Nakamura T
    Langmuir; 2006 Jun; 22(13):5645-53. PubMed ID: 16768489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface chemistry for stable and smart molecular and biomolecular interfaces via photochemical grafting of alkenes.
    Wang X; Landis EC; Franking R; Hamers RJ
    Acc Chem Res; 2010 Sep; 43(9):1205-15. PubMed ID: 20853906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Made-to-order nanocarbons through deterministic plasma nanotechnology.
    Ren Y; Xu S; Rider AE; Ostrikov KK
    Nanoscale; 2011 Feb; 3(2):731-40. PubMed ID: 21079877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal and mechanistic tracking of cellular uptake dynamics with novel surface fluorophore-bound nanodiamonds.
    Schrand AM; Lin JB; Hens SC; Hussain SM
    Nanoscale; 2011 Feb; 3(2):435-45. PubMed ID: 20877788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct functionalization of nanodiamond particles using dopamine derivatives.
    Barras A; Lyskawa J; Szunerits S; Woisel P; Boukherroub R
    Langmuir; 2011 Oct; 27(20):12451-7. PubMed ID: 21888388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-dependent reactivity of diamond nanoparticles.
    Williams OA; Hees J; Dieker C; Jäger W; Kirste L; Nebel CE
    ACS Nano; 2010 Aug; 4(8):4824-30. PubMed ID: 20731457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanodiamond-Decorated Silica Spheres as a Chromatographic Material.
    Xue Z; Vinci JC; Colón LA
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):4149-57. PubMed ID: 26790050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass spectrometry of nanodiamonds.
    Houska J; Panyala NR; Peña-Méndez EM; Havel J
    Rapid Commun Mass Spectrom; 2009 Apr; 23(8):1125-31. PubMed ID: 19280609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.