These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 21567414)
1. Isolation and anti-inflammatory effect of astragalin synthesized by enzymatic hydrolysis of tea seed extract. Lee HB; Kim EK; Park SJ; Bang SG; Kim TG; Chung DW J Sci Food Agric; 2011 Oct; 91(13):2315-21. PubMed ID: 21567414 [TBL] [Abstract][Full Text] [Related]
2. Novel synthesis of leucoside by enzymatic hydrolysis of tea seed extract. Chung DW; Lee SB J Sci Food Agric; 2013 Jan; 93(2):362-7. PubMed ID: 22777867 [TBL] [Abstract][Full Text] [Related]
3. Isolation and characterization of nicotiflorin obtained by enzymatic hydrolysis of two precursors in tea seed extract. Lee HB; Kim EK; Park SJ; Bang SG; Kim TG; Chung DW J Agric Food Chem; 2010 Apr; 58(8):4808-13. PubMed ID: 20225859 [TBL] [Abstract][Full Text] [Related]
4. Enzymatic preparation of kaempferol from green tea seed and its antioxidant activity. Park JS; Rho HS; Kim DH; Chang IS J Agric Food Chem; 2006 Apr; 54(8):2951-6. PubMed ID: 16608214 [TBL] [Abstract][Full Text] [Related]
5. Kaempferol glycosides from the twigs of Cinnamomum osmophloeum and their nitric oxide production inhibitory activities. Lin HY; Chang ST Carbohydr Res; 2012 Dec; 364():49-53. PubMed ID: 23174526 [TBL] [Abstract][Full Text] [Related]
6. Anti-oxidative and inhibitory activities on nitric oxide (NO) and prostaglandin E2 (COX-2) production of flavonoids from seeds of Prunus tomentosa Thunberg. Kim SK; Kim HJ; Choi SE; Park KH; Choi HK; Lee MW Arch Pharm Res; 2008 Apr; 31(4):424-8. PubMed ID: 18449498 [TBL] [Abstract][Full Text] [Related]
7. Isolation of camelliaside C from "tea seed cake" and inhibitory effects of its derivatives on arachidonate 5-lipoxygenase. Sekine T; Arai Y; Ikegami F; Fujii Y; Shindo S; Yanagisawa T; Ishida Y; Okonogi S; Murakoshi I Chem Pharm Bull (Tokyo); 1993 Jun; 41(6):1185-7. PubMed ID: 8370116 [TBL] [Abstract][Full Text] [Related]
8. Anti-inflammatory flavonolignans from Hydnocarpus anthelminthica seeds. Wang JF; Yin GF; Zhou XJ; Su J; Li Y; Zhong HM; Duan G; Cheng YX J Asian Nat Prod Res; 2011 Jan; 13(1):80-3. PubMed ID: 21253954 [TBL] [Abstract][Full Text] [Related]
9. Two flavonol glycosides from seeds of Camellia sinensis. Sekine T; Arita J; Yamaguchi A; Saito K; Okonogi S; Morisaki N; Iwasaki S; Murakoshi I Phytochemistry; 1991; 30(3):991-5. PubMed ID: 1368184 [TBL] [Abstract][Full Text] [Related]
10. Phenylethanoid glycosides from Lantana fucata with in vitro anti-inflammatory activity. Julião Lde S; Piccinelli AL; Marzocco S; Leitão SG; Lotti C; Autore G; Rastrelli L J Nat Prod; 2009 Aug; 72(8):1424-8. PubMed ID: 19634889 [TBL] [Abstract][Full Text] [Related]
11. An extract of Apium graveolens var. dulce leaves: structure of the major constituent, apiin, and its anti-inflammatory properties. Mencherini T; Cau A; Bianco G; Della Loggia R; Aquino RP; Autore G J Pharm Pharmacol; 2007 Jun; 59(6):891-7. PubMed ID: 17637182 [TBL] [Abstract][Full Text] [Related]
12. Suppressive effect of a proanthocyanidin-rich extract from longan (Dimocarpus longan Lour.) flowers on nitric oxide production in LPS-stimulated macrophage cells. Ho SC; Hwang LS; Shen YJ; Lin CC J Agric Food Chem; 2007 Dec; 55(26):10664-70. PubMed ID: 18052097 [TBL] [Abstract][Full Text] [Related]
13. Kaurane diterpenes from Isodon japonicus inhibit nitric oxide and prostaglandin E2 production and NF-kappaB activation in LPS-stimulated macrophage RAW264.7 cells. Hwang BY; Lee JH; Koo TH; Kim HS; Hong YS; Ro JS; Lee KS; Lee JJ Planta Med; 2001 Jul; 67(5):406-10. PubMed ID: 11488452 [TBL] [Abstract][Full Text] [Related]
14. In-vitro and in-vivo anti-inflammatory and antinociceptive effects of the methanol extract of the roots of Morinda officinalis. Kim IT; Park HJ; Nam JH; Park YM; Won JH; Choi J; Choe BK; Lee KT J Pharm Pharmacol; 2005 May; 57(5):607-15. PubMed ID: 15901350 [TBL] [Abstract][Full Text] [Related]
15. The occurrence of 15-keto-prostaglandins in the red alga Gracilaria verrucosa. Dang TH; Lee HJ; Yoo ES; Hong J; Choi JS; Jung JH Arch Pharm Res; 2010 Sep; 33(9):1325-9. PubMed ID: 20945130 [TBL] [Abstract][Full Text] [Related]
16. Saponins in yerba mate tea ( Ilex paraguariensis A. St.-Hil) and quercetin synergistically inhibit iNOS and COX-2 in lipopolysaccharide-induced macrophages through NFkappaB pathways. Puangpraphant S; de Mejia EG J Agric Food Chem; 2009 Oct; 57(19):8873-83. PubMed ID: 19807157 [TBL] [Abstract][Full Text] [Related]
17. Identification of compounds in adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) seed hull extracts that inhibit lipopolysaccharide-induced inflammation in RAW 264.7 macrophages. Huang DW; Chung CP; Kuo YH; Lin YL; Chiang W J Agric Food Chem; 2009 Nov; 57(22):10651-7. PubMed ID: 19886607 [TBL] [Abstract][Full Text] [Related]
18. Anti-inflammatory effects of eriodictyol in lipopolysaccharide-stimulated raw 264.7 murine macrophages. Lee JK Arch Pharm Res; 2011 Apr; 34(4):671-9. PubMed ID: 21544733 [TBL] [Abstract][Full Text] [Related]
19. Sesquiterpene lactone fraction from Artemisia khorassanica inhibits inducible nitric oxide synthase and cyclooxygenase-2 expression through the inactivation of NF-κB. Emami SA; Taghizadeh Rabe SZ; Iranshahi M; Ahi A; Mahmoudi M Immunopharmacol Immunotoxicol; 2010 Dec; 32(4):688-95. PubMed ID: 20233108 [TBL] [Abstract][Full Text] [Related]
20. Effect of Sasa senanensis Rehder extract on NO and PGE2 production by activated mouse macrophage-like RAW264.7 cells. Zhou L; Hashimoto K; Satoh K; Yokote Y; Kitajima M; Oizumi T; Oizumi H; Sakagami H In Vivo; 2009; 23(5):773-7. PubMed ID: 19779114 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]