These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 21567447)

  • 1. Cross sectional geometry of the forelimb skeleton and flight mode in pelecaniform birds.
    Simons EL; Hieronymus TL; O'Connor PM
    J Morphol; 2011 Aug; 272(8):958-71. PubMed ID: 21567447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone laminarity in the avian forelimb skeleton and its relationship to flight mode: testing functional interpretations.
    Simons EL; O'connor PM
    Anat Rec (Hoboken); 2012 Mar; 295(3):386-96. PubMed ID: 22241723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural features of cross-sectional wing bones in the griffon vulture (Gyps fulvus) as a prediction of flight style.
    Frongia GN; Muzzeddu M; Mereu P; Leoni G; Berlinguer F; Zedda M; Farina V; Satta V; Di Stefano M; Naitana S
    J Morphol; 2018 Dec; 279(12):1753-1763. PubMed ID: 30397929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forelimb skeletal morphology and flight mode evolution in pelecaniform birds.
    Simons EL
    Zoology (Jena); 2010 Jan; 113(1):39-46. PubMed ID: 20071157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructure and cross-sectional shape of limb bones in Great Horned Owls and Red-tailed Hawks: how do these features relate to differences in flight and hunting behavior?
    Marelli CA; Simons EL
    PLoS One; 2014; 9(8):e106094. PubMed ID: 25162595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficiency of lift production in flapping and gliding flight of swifts.
    Henningsson P; Hedenström A; Bomphrey RJ
    PLoS One; 2014; 9(2):e90170. PubMed ID: 24587260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wing morphology, flight type and migration distance predict accumulated fuel load in birds.
    Vincze O; Vágási CI; Pap PL; Palmer C; Møller AP
    J Exp Biol; 2019 Jan; 222(Pt 1):. PubMed ID: 30446537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between wing bone microstructure and different flight styles: The case of the griffon vulture (gyps fulvus) and greater flamingo (phoenicopterus roseus).
    Frongia GN; Naitana S; Farina V; Gadau SD; Stefano MD; Muzzeddu M; Leoni G; Zedda M
    J Anat; 2021 Jul; 239(1):59-69. PubMed ID: 33650143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Torsional resistance as a principal component of the structural design of long bones: comparative multivariate evidence in birds.
    de Margerie E; Sanchez S; Cubo J; Castanet J
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Jan; 282(1):49-66. PubMed ID: 15584036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone histological correlates of soaring and high-frequency flapping flight in the furculae of birds.
    Mitchell J; Legendre LJ; Lefèvre C; Cubo J
    Zoology (Jena); 2017 Jun; 122():90-99. PubMed ID: 28495051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional, high-resolution skeletal kinematics of the avian wing and shoulder during ascending flapping flight and uphill flap-running.
    Baier DB; Gatesy SM; Dial KP
    PLoS One; 2013; 8(5):e63982. PubMed ID: 23691132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scale effects on the stresses and safety factors in the wing bones of birds and bats.
    Kirkpatrick SJ
    J Exp Biol; 1994 May; 190():195-215. PubMed ID: 7964391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collagen fiber orientation pattern, osteon morphology and distribution, and presence of laminar histology do not distinguish torsion from bending in bat and pigeon wing bones.
    Skedros JG; Doutré MS
    J Anat; 2019 Jun; 234(6):748-763. PubMed ID: 30924933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerodynamic consequences of wing morphing during emulated take-off and gliding in birds.
    Klaassen van Oorschot B; Mistick EA; Tobalske BW
    J Exp Biol; 2016 Oct; 219(Pt 19):3146-3154. PubMed ID: 27473437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogeny and forelimb disparity in waterbirds.
    Wang X; Clarke JA
    Evolution; 2014 Oct; 68(10):2847-60. PubMed ID: 24989899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerodynamic flight performance in flap-gliding birds and bats.
    Muijres FT; Henningsson P; Stuiver M; Hedenström A
    J Theor Biol; 2012 Aug; 306():120-8. PubMed ID: 22726811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The gliding speed of migrating birds: slow and safe or fast and risky?
    Horvitz N; Sapir N; Liechti F; Avissar R; Mahrer I; Nathan R
    Ecol Lett; 2014 Jun; 17(6):670-9. PubMed ID: 24641086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of avian flight: muscles and constraints on performance.
    Tobalske BW
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight.
    KleinHeerenbrink M; Johansson LC; Hedenström A
    J R Soc Interface; 2017 May; 14(130):. PubMed ID: 28539482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wing bone geometry reveals active flight in Archaeopteryx.
    Voeten DFAE; Cubo J; de Margerie E; Röper M; Beyrand V; Bureš S; Tafforeau P; Sanchez S
    Nat Commun; 2018 Mar; 9(1):923. PubMed ID: 29535376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.