These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 21567447)

  • 21. Qualitative skeletal correlates of wing shape in extant birds (Aves: Neoaves).
    Hieronymus TL
    BMC Evol Biol; 2015 Feb; 15():30. PubMed ID: 25880306
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Forelimb posture in dinosaurs and the evolution of the avian flapping flight-stroke.
    Nudds RL; Dyke GJ
    Evolution; 2009 Apr; 63(4):994-1002. PubMed ID: 19154383
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scaling of bird wings and feathers for efficient flight.
    Sullivan TN; Meyers MA; Arzt E
    Sci Adv; 2019 Jan; 5(1):eaat4269. PubMed ID: 30746435
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flight modes in migrating European bee-eaters: heart rate may indicate low metabolic rate during soaring and gliding.
    Sapir N; Wikelski M; McCue MD; Pinshow B; Nathan R
    PLoS One; 2010 Nov; 5(11):e13956. PubMed ID: 21085655
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wing morphology and flight behavior of pelecaniform seabirds.
    Brewer ML; Hertel F
    J Morphol; 2007 Oct; 268(10):866-77. PubMed ID: 17638303
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Avian wing proportions and flight styles: first step towards predicting the flight modes of mesozoic birds.
    Wang X; McGowan AJ; Dyke GJ
    PLoS One; 2011; 6(12):e28672. PubMed ID: 22163324
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Locomotory abilities and habitat of the Cretaceous bird Gansus yumenensis inferred from limb length proportions.
    Nudds RL; Atterholt J; Wang X; You HL; Dyke GJ
    J Evol Biol; 2013 Jan; 26(1):150-4. PubMed ID: 23194019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Massive, solidified bone in the wing of a volant courting bird.
    Bostwick KS; Riccio ML; Humphries JM
    Biol Lett; 2012 Oct; 8(5):760-3. PubMed ID: 22696286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ecology and caudal skeletal morphology in birds: the convergent evolution of pygostyle shape in underwater foraging taxa.
    Felice RN; O'Connor PM
    PLoS One; 2014; 9(2):e89737. PubMed ID: 24586998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Avian furcula morphology may indicate relationships of flight requirements among birds.
    Hui CA
    J Morphol; 2002 Mar; 251(3):284-93. PubMed ID: 11835365
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Morphologic-functional study of the locomotor system of penguins as a general model of movement in under-water flight. I].
    Bannasch R
    Gegenbaurs Morphol Jahrb; 1986; 132(5):645-79. PubMed ID: 3803859
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New model of flap-gliding flight.
    Sachs G
    J Theor Biol; 2015 Jul; 377():110-6. PubMed ID: 25841702
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Incipient wing flapping enhances aerial performance of a robotic paravian model.
    Sathe EA; Chronister NJ; Dudley R
    Bioinspir Biomim; 2023 Jun; 18(4):. PubMed ID: 37253379
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phylogenetics and ecomorphology of emarginate primary feathers.
    Klaassen van Oorschot B; Tang HK; Tobalske BW
    J Morphol; 2017 Jul; 278(7):936-947. PubMed ID: 28523646
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the size and flight diversity of giant pterosaurs, the use of birds as pterosaur analogues and comments on pterosaur flightlessness.
    Witton MP; Habib MB
    PLoS One; 2010 Nov; 5(11):e13982. PubMed ID: 21085624
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reinforcements in avian wing bones: Experiments, analysis, and modeling.
    Novitskaya E; Ruestes CJ; Porter MM; Lubarda VA; Meyers MA; McKittrick J
    J Mech Behav Biomed Mater; 2017 Dec; 76():85-96. PubMed ID: 28734609
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Narrow primary feather rachises in Confuciusornis and Archaeopteryx suggest poor flight ability.
    Nudds RL; Dyke GJ
    Science; 2010 May; 328(5980):887-9. PubMed ID: 20466930
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High Wing-Loading Correlates with Dive Performance in Birds, Suggesting a Strategy to Reduce Buoyancy.
    Lapsansky AB; Warrick DR; Tobalske BW
    Integr Comp Biol; 2022 Oct; 62(4):878-889. PubMed ID: 35810134
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flapping before Flight: High Resolution, Three-Dimensional Skeletal Kinematics of Wings and Legs during Avian Development.
    Heers AM; Baier DB; Jackson BE; Dial KP
    PLoS One; 2016; 11(4):e0153446. PubMed ID: 27100994
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A wing-assisted running robot and implications for avian flight evolution.
    Peterson K; Birkmeyer P; Dudley R; Fearing RS
    Bioinspir Biomim; 2011 Dec; 6(4):046008. PubMed ID: 22004831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.