BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21567643)

  • 1. Microparticle-supported conjugated polyelectrolyte brushes prepared by surface-initiated kumada catalyst transfer polycondensation for sensor applications.
    Tkachov R; Senkovskyy V; Oertel U; Synytska A; Horecha M; Kiriy A
    Macromol Rapid Commun; 2010 Dec; 31(24):2146-50. PubMed ID: 21567643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Hairy" poly(3-hexylthiophene) particles prepared via surface-initiated Kumada catalyst-transfer polycondensation.
    Senkovskyy V; Tkachov R; Beryozkina T; Komber H; Oertel U; Horecha M; Bocharova V; Stamm M; Gevorgyan SA; Krebs FC; Kiriy A
    J Am Chem Soc; 2009 Nov; 131(45):16445-53. PubMed ID: 19860410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-initiated Kumada catalyst-transfer polycondensation of poly(9,9-dioctylfluorene) from organosilica particles: chain-confinement promoted beta-phase formation.
    Tkachov R; Senkovskyy V; Horecha M; Oertel U; Stamm M; Kiriy A
    Chem Commun (Camb); 2010 Mar; 46(9):1425-7. PubMed ID: 20162136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface engineering using Kumada catalyst-transfer polycondensation (KCTP): preparation and structuring of poly(3-hexylthiophene)-based graft copolymer brushes.
    Khanduyeva N; Senkovskyy V; Beryozkina T; Horecha M; Stamm M; Uhrich C; Riede M; Leo K; Kiriy A
    J Am Chem Soc; 2009 Jan; 131(1):153-61. PubMed ID: 19128176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-confined nickel mediated cross-coupling reactions: characterization of initiator environment in Kumada catalyst-transfer polycondensation.
    Sontag SK; Sheppard GR; Usselman NM; Marshall N; Locklin J
    Langmuir; 2011 Oct; 27(19):12033-41. PubMed ID: 21875096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of conjugated polymer brushes by surface-initiated catalyst-transfer polycondensation.
    Sontag SK; Marshall N; Locklin J
    Chem Commun (Camb); 2009 Jun; (23):3354-6. PubMed ID: 19503868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of TiO2-poly(3-hexylthiophene) hybrid particles through surface-initiated Kumada catalyst-transfer polycondensation.
    Boon F; Moerman D; Laurencin D; Richeter S; Guari Y; Mehdi A; Dubois P; Lazzaroni R; Clément S
    Langmuir; 2014 Sep; 30(38):11340-7. PubMed ID: 25188446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conductive polymer brushes of regioregular head-to-tail poly(3-alkylthiophenes) via catalyst-transfer surface-initiated polycondensation.
    Senkovskyy V; Khanduyeva N; Komber H; Oertel U; Stamm M; Kuckling D; Kiriy A
    J Am Chem Soc; 2007 May; 129(20):6626-32. PubMed ID: 17469830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kumada Catalyst-Transfer Polycondensation: Mechanism, Opportunities, and Challenges.
    Kiriy A; Senkovskyy V; Sommer M
    Macromol Rapid Commun; 2011 Oct; 32(19):1503-17. PubMed ID: 21800394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-Initiated Synthesis of Conjugated Microporous Polymers: Chain-Growth Kumada Catalyst-Transfer Polycondensation at Work.
    Senkovskyy V; Senkovska I; Kiriy A
    ACS Macro Lett; 2012 Apr; 1(4):494-498. PubMed ID: 35585748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimuli-responsive polyelectrolyte polymer brushes prepared via atom-transfer radical polymerization.
    Ayres N; Boyes SG; Brittain WJ
    Langmuir; 2007 Jan; 23(1):182-9. PubMed ID: 17190502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal Conductance of Poly(3-methylthiophene) Brushes.
    Roy A; Bougher TL; Geng R; Ke Y; Locklin J; Cola BA
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25578-85. PubMed ID: 27579585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precision Synthesis of Conjugated Polymers Using the Kumada Methodology.
    Cheng S; Zhao R; Seferos DS
    Acc Chem Res; 2021 Nov; 54(22):4203-4214. PubMed ID: 34726058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and swelling behavior of pH-responsive polybase brushes.
    Sanjuan S; Perrin P; Pantoustier N; Tran Y
    Langmuir; 2007 May; 23(10):5769-78. PubMed ID: 17425342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Random catalyst walking along polymerized poly(3-hexylthiophene) chains in Kumada catalyst-transfer polycondensation.
    Tkachov R; Senkovskyy V; Komber H; Sommer JU; Kiriy A
    J Am Chem Soc; 2010 Jun; 132(22):7803-10. PubMed ID: 20465260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Palladium-Mediated Surface-Initiated Kumada Catalyst Polycondensation: A Facile Route Towards Oriented Conjugated Polymers.
    Huddleston NE; Sontag SK; Bilbrey JA; Sheppard GR; Locklin J
    Macromol Rapid Commun; 2012 Dec; 33(24):2115-20. PubMed ID: 22968767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-pot preparation of ferrocene-functionalized polymer brushes on gold substrates by combined surface-initiated atom transfer radical polymerization and "click chemistry".
    Xu LQ; Wan D; Gong HF; Neoh KG; Kang ET; Fu GD
    Langmuir; 2010 Oct; 26(19):15376-82. PubMed ID: 20839788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-initiated synthesis of poly(3-methylthiophene) from indium tin oxide and its electrochemical properties.
    Doubina N; Jenkins JL; Paniagua SA; Mazzio KA; MacDonald GA; Jen AK; Armstrong NR; Marder SR; Luscombe CK
    Langmuir; 2012 Jan; 28(3):1900-8. PubMed ID: 22149001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimuli-responsive polyelectrolyte block copolymer brushes synthesized from the Si wafer via atom-transfer radical polymerization.
    Yu K; Wang H; Xue L; Han Y
    Langmuir; 2007 Jan; 23(3):1443-52. PubMed ID: 17241071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grafting Poly(3-hexylthiophene) from Silicon Nanocrystal Surfaces: Synthesis and Properties of a Functional Hybrid Material with Direct Interfacial Contact.
    Islam MA; Purkait TK; Mobarok MH; Hoehlein IM; Sinelnikov R; Iqbal M; Azulay D; Balberg I; Millo O; Rieger B; Veinot JG
    Angew Chem Int Ed Engl; 2016 Jun; 55(26):7393-7. PubMed ID: 27144670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.