BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 21567703)

  • 1. Manipulating the expression rate and enantioselectivity of an epoxide hydrolase by using directed evolution.
    Reetz MT; Zheng H
    Chembiochem; 2011 Jul; 12(10):1529-35. PubMed ID: 21567703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning of an epoxide hydrolase-encoding gene from Aspergillus niger M200, overexpression in E. coli, and modification of activity and enantioselectivity of the enzyme by protein engineering.
    Kotik M; Stepánek V; Kyslík P; Maresová H
    J Biotechnol; 2007 Oct; 132(1):8-15. PubMed ID: 17875334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed evolution of an enantioselective epoxide hydrolase: uncovering the source of enantioselectivity at each evolutionary stage.
    Reetz MT; Bocola M; Wang LW; Sanchis J; Cronin A; Arand M; Zou J; Archelas A; Bottalla AL; Naworyta A; Mowbray SL
    J Am Chem Soc; 2009 Jun; 131(21):7334-43. PubMed ID: 19469578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning, expression, purification, and characterization of a novel epoxide hydrolase from Aspergillus niger SQ-6.
    Liu Y; Wu S; Wang J; Yang L; Sun W
    Protein Expr Purif; 2007 Jun; 53(2):239-46. PubMed ID: 17317214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the enantioselectivity of an epoxide hydrolase by directed evolution.
    Reetz MT; Torre C; Eipper A; Lohmer R; Hermes M; Brunner B; Maichele A; Bocola M; Arand M; Cronin A; Genzel Y; Archelas A; Furstoss R
    Org Lett; 2004 Jan; 6(2):177-80. PubMed ID: 14723522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Addressing the numbers problem in directed evolution.
    Reetz MT; Kahakeaw D; Lohmer R
    Chembiochem; 2008 Jul; 9(11):1797-804. PubMed ID: 18567049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laboratory evolution of an epoxide hydrolase - towards an enantioconvergent biocatalyst.
    Kotik M; Archelas A; Faměrová V; Oubrechtová P; Křen V
    J Biotechnol; 2011 Oct; 156(1):1-10. PubMed ID: 21854816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulating the stereoselectivity of limonene epoxide hydrolase by directed evolution based on iterative saturation mutagenesis.
    Zheng H; Reetz MT
    J Am Chem Soc; 2010 Nov; 132(44):15744-51. PubMed ID: 20958062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the efficiency of directed evolution in focused enzyme libraries by the adaptive substituent reordering algorithm.
    Feng X; Sanchis J; Reetz MT; Rabitz H
    Chemistry; 2012 Apr; 18(18):5646-54. PubMed ID: 22434591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fungal epoxide hydrolases: new landmarks in sequence-activity space.
    Smit MS
    Trends Biotechnol; 2004 Mar; 22(3):123-9. PubMed ID: 15036862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed evolution of epoxide hydrolase from A. radiobacter toward higher enantioselectivity by error-prone PCR and DNA shuffling.
    van Loo B; Spelberg JH; Kingma J; Sonke T; Wubbolts MG; Janssen DB
    Chem Biol; 2004 Jul; 11(7):981-90. PubMed ID: 15271356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the thermal robustness of an enzyme by directed evolution: least favorable starting points and inferior mutants can map superior evolutionary pathways.
    Gumulya Y; Reetz MT
    Chembiochem; 2011 Nov; 12(16):2502-10. PubMed ID: 21913300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Many pathways in laboratory evolution can lead to improved enzymes: how to escape from local minima.
    Gumulya Y; Sanchis J; Reetz MT
    Chembiochem; 2012 May; 13(7):1060-6. PubMed ID: 22522601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and molecular characterization of a soluble epoxide hydrolase from Aspergillus niger that is related to mammalian microsomal epoxide hydrolase.
    Arand M; Hemmer H; Dürk H; Baratti J; Archelas A; Furstoss R; Oesch F
    Biochem J; 1999 Nov; 344 Pt 1(Pt 1):273-80. PubMed ID: 10548561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: rigorous comparison with traditional methods.
    Reetz MT; Prasad S; Carballeira JD; Gumulya Y; Bocola M
    J Am Chem Soc; 2010 Jul; 132(26):9144-52. PubMed ID: 20536132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel microbial epoxide hydrolases for biohydrolysis of glycidyl derivatives.
    Kotik M; Brichac J; Kyslík P
    J Biotechnol; 2005 Dec; 120(4):364-75. PubMed ID: 16061300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient kinetic resolution of phenyl glycidyl ether by a novel epoxide hydrolase from Tsukamurella paurometabola.
    Wu K; Wang H; Sun H; Wei D
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9511-21. PubMed ID: 26088175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inverting enantioselectivity of Burkholderia gladioli esterase EstB by directed and designed evolution.
    Ivancic M; Valinger G; Gruber K; Schwab H
    J Biotechnol; 2007 Mar; 129(1):109-22. PubMed ID: 17147964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced catalytic efficiency and enantioselectivity of epoxide hydrolase from Agrobacterium radiobacter AD1 by iterative saturation mutagenesis for (R)-epichlorohydrin synthesis.
    Zou SP; Zheng YG; Wu Q; Wang ZC; Xue YP; Liu ZQ
    Appl Microbiol Biotechnol; 2018 Jan; 102(2):733-742. PubMed ID: 29151159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocatalytic resolution of glycidyl phenyl ether using a novel epoxide hydrolase from a marine bacterium, Maritimibacter alkaliphilus KCCM 42376 [corrected].
    Woo JH; Kang JH; Hwang YO; Cho JC; Kim SJ; Kang SG
    J Biosci Bioeng; 2010 Jun; 109(6):539-44. PubMed ID: 20471590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.