These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 21568273)

  • 1. Direct assessment of the α-helix nucleation time.
    Serrano AL; Tucker MJ; Gai F
    J Phys Chem B; 2011 Jun; 115(22):7472-8. PubMed ID: 21568273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folding kinetics of a naturally occurring helical peptide: implication of the folding speed limit of helical proteins.
    Mukherjee S; Chowdhury P; Bunagan MR; Gai F
    J Phys Chem B; 2008 Jul; 112(30):9146-50. PubMed ID: 18610960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser temperature jump study of the helix<==>coil kinetics of an alanine peptide interpreted with a 'kinetic zipper' model.
    Thompson PA; Eaton WA; Hofrichter J
    Biochemistry; 1997 Jul; 36(30):9200-10. PubMed ID: 9230053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Folding dynamics of the Trp-cage miniprotein: evidence for a native-like intermediate from combined time-resolved vibrational spectroscopy and molecular dynamics simulations.
    Meuzelaar H; Marino KA; Huerta-Viga A; Panman MR; Smeenk LE; Kettelarij AJ; van Maarseveen JH; Timmerman P; Bolhuis PG; Woutersen S
    J Phys Chem B; 2013 Oct; 117(39):11490-501. PubMed ID: 24050152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exposing the Nucleation Site in α-Helix Folding: A Joint Experimental and Simulation Study.
    Acharyya A; Ge Y; Wu H; DeGrado WF; Voelz VA; Gai F
    J Phys Chem B; 2019 Feb; 123(8):1797-1807. PubMed ID: 30694671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-dependent helix-coil transition of an alanine based peptide.
    Huang CY; Klemke JW; Getahun Z; DeGrado WF; Gai F
    J Am Chem Soc; 2001 Sep; 123(38):9235-8. PubMed ID: 11562202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One Peptide Reveals the Two Faces of α-Helix Unfolding-Folding Dynamics.
    Jesus CSH; Cruz PF; Arnaut LG; Brito RMM; Serpa C
    J Phys Chem B; 2018 Apr; 122(14):3790-3800. PubMed ID: 29558133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Glu/Arg, Asp/Arg, and Glu/Lys Salt Bridges on α-Helical Stability and Folding Kinetics.
    Meuzelaar H; Vreede J; Woutersen S
    Biophys J; 2016 Jun; 110(11):2328-2341. PubMed ID: 27276251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of side chains in helix nucleation differ from helix propagation.
    Miller SE; Watkins AM; Kallenbach NR; Arora PS
    Proc Natl Acad Sci U S A; 2014 May; 111(18):6636-41. PubMed ID: 24753597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microscopic nucleation and propagation rates of an alanine-based α-helix.
    Lin CW; Gai F
    Phys Chem Chem Phys; 2017 Feb; 19(7):5028-5036. PubMed ID: 28165082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpha-Helix folding in the presence of structural constraints.
    Ihalainen JA; Paoli B; Muff S; Backus EH; Bredenbeck J; Woolley GA; Caflisch A; Hamm P
    Proc Natl Acad Sci U S A; 2008 Jul; 105(28):9588-93. PubMed ID: 18621686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast events in protein folding: helix melting and formation in a small peptide.
    Williams S; Causgrove TP; Gilmanshin R; Fang KS; Callender RH; Woodruff WH; Dyer RB
    Biochemistry; 1996 Jan; 35(3):691-7. PubMed ID: 8547249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Helix nucleation kinetics from molecular simulations in explicit solvent.
    Hummer G; García AE; Garde S
    Proteins; 2001 Jan; 42(1):77-84. PubMed ID: 11093262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examination of the folding of a short alanine-based helical peptide with salt bridges using molecular dynamics simulation.
    Wang WZ; Lin T; Sun YC
    J Phys Chem B; 2007 Apr; 111(13):3508-14. PubMed ID: 17388513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of charge-charge interactions on the kinetics of alpha-helix formation.
    Du D; Bunagan MR; Gai F
    Biophys J; 2007 Dec; 93(11):4076-82. PubMed ID: 17704172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the influence of sequence-dependent interactions upon alpha-helix stability in alanine-based linear peptides.
    Jacchieri SG; Richards NG
    Biopolymers; 1993 Jun; 33(6):971-84. PubMed ID: 8318669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Helix formation by alanine-based peptides in pure water and electrolyte solutions: insights from molecular dynamics simulations.
    Ioannou F; Leontidis E; Archontis G
    J Phys Chem B; 2013 Aug; 117(34):9866-76. PubMed ID: 23919617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure, stability and folding of the alpha-helix.
    Doig AJ; Andrew CD; Cochran DA; Hughes E; Penel S; Sun JK; Stapley BJ; Clarke DT; Jones GR
    Biochem Soc Symp; 2001; (68):95-110. PubMed ID: 11573350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elucidating the folding problem of helical peptides using empirical parameters. II. Helix macrodipole effects and rational modification of the helical content of natural peptides.
    Muñoz V; Serrano L
    J Mol Biol; 1995 Jan; 245(3):275-96. PubMed ID: 7844817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What is the time scale for α-helix nucleation?
    De Sancho D; Best RB
    J Am Chem Soc; 2011 May; 133(17):6809-16. PubMed ID: 21480610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.