These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 21568285)
1. Comparative model studies of gastric toxicity of nonsteroidal anti-inflammatory drugs. Markiewicz M; Pasenkiewicz-Gierula M Langmuir; 2011 Jun; 27(11):6950-61. PubMed ID: 21568285 [TBL] [Abstract][Full Text] [Related]
2. Nonpolar interactions between trans-membrane helical EGF peptide and phosphatidylcholines, sphingomyelins and cholesterol. Molecular dynamics simulation studies. Róg T; Murzyn K; Karttunen M; Pasenkiewicz-Gierula M J Pept Sci; 2008 Apr; 14(4):374-82. PubMed ID: 17985365 [TBL] [Abstract][Full Text] [Related]
3. Cholesterol effects on a mixed-chain phosphatidylcholine bilayer: a molecular dynamics simulation study. Róg T; Pasenkiewicz-Gierula M Biochimie; 2006 May; 88(5):449-60. PubMed ID: 16356621 [TBL] [Abstract][Full Text] [Related]
4. Assessing gastric toxicity of xanthone derivatives of anti-inflammatory activity using simulation and experimental approaches. Markiewicz M; Librowski T; Lipkowska A; Serda P; Baczynski K; Pasenkiewicz-Gierula M Biophys Chem; 2017 Jan; 220():20-33. PubMed ID: 27846425 [TBL] [Abstract][Full Text] [Related]
5. Interaction of nonsteroidal anti-inflammatory drugs with membranes: in vitro assessment and relevance for their biological actions. Pereira-Leite C; Nunes C; Reis S Prog Lipid Res; 2013 Oct; 52(4):571-84. PubMed ID: 23981364 [TBL] [Abstract][Full Text] [Related]
6. Molecular origins of bending rigidity in lipids with isolated and conjugated double bonds: the effect of cholesterol. Khelashvili G; Johner N; Zhao G; Harries D; Scott HL Chem Phys Lipids; 2014 Feb; 178():18-26. PubMed ID: 24394210 [TBL] [Abstract][Full Text] [Related]
7. Phosphatidylcholine attenuates aggregation of nonsteroidal anti-inflammatory drugs with bile acid. Prakash P; Gorfe AA Biochemistry; 2013 Oct; 52(42):7461-9. PubMed ID: 24066846 [TBL] [Abstract][Full Text] [Related]
8. Behavior of fluorescent cholesterol analogues dehydroergosterol and cholestatrienol in lipid bilayers: a molecular dynamics study. Robalo JR; do Canto AM; Carvalho AJ; Ramalho JP; Loura LM J Phys Chem B; 2013 May; 117(19):5806-19. PubMed ID: 23597397 [TBL] [Abstract][Full Text] [Related]
9. Molecular dynamics studies of the molecular structure and interactions of cholesterol superlattices and random domains in an unsaturated phosphatidylcholine bilayer membrane. Zhu Q; Cheng KH; Vaughn MW J Phys Chem B; 2007 Sep; 111(37):11021-31. PubMed ID: 17718554 [TBL] [Abstract][Full Text] [Related]
10. Structural association of nonsteroidal anti-inflammatory drugs with lipid membranes. Boggara MB; Mihailescu M; Krishnamoorti R J Am Chem Soc; 2012 Dec; 134(48):19669-76. PubMed ID: 23134450 [TBL] [Abstract][Full Text] [Related]
11. Insight into the putative specific interactions between cholesterol, sphingomyelin, and palmitoyl-oleoyl phosphatidylcholine. Aittoniemi J; Niemelä PS; Hyvönen MT; Karttunen M; Vattulainen I Biophys J; 2007 Feb; 92(4):1125-37. PubMed ID: 17114220 [TBL] [Abstract][Full Text] [Related]
12. Synchrotron SAXS and WAXS study of the interactions of NSAIDs with lipid membranes. Nunes C; Brezesinski G; Lima JL; Reis S; Lúcio M J Phys Chem B; 2011 Jun; 115(24):8024-32. PubMed ID: 21598995 [TBL] [Abstract][Full Text] [Related]
13. Is the cholesterol bilayer domain a barrier to oxygen transport into the eye lens? Plesnar E; Szczelina R; Subczynski WK; Pasenkiewicz-Gierula M Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):434-441. PubMed ID: 29079282 [TBL] [Abstract][Full Text] [Related]
14. NSAIDs, coxibs, CINOD and H2S-releasing NSAIDs: what lies beyond the horizon. Fiorucci S; Santucci L; Distrutti E Dig Liver Dis; 2007 Dec; 39(12):1043-51. PubMed ID: 17997373 [TBL] [Abstract][Full Text] [Related]
15. Binding of nonsteroidal anti-inflammatory drugs to DPPC: structure and thermodynamic aspects. Lúcio M; Bringezu F; Reis S; Lima JL; Brezesinski G Langmuir; 2008 Apr; 24(8):4132-9. PubMed ID: 18336047 [TBL] [Abstract][Full Text] [Related]
16. Molecular insight into the effect of lipid bilayer environments on thrombospondin-1 and calreticulin interactions. Wang L; Murphy-Ullrich JE; Song Y Biochemistry; 2014 Oct; 53(40):6309-22. PubMed ID: 25260145 [TBL] [Abstract][Full Text] [Related]
17. Cholesterol driven alteration of the conformation and dynamics of phospholamban in model membranes. Manna M; Mukhopadhyay C Phys Chem Chem Phys; 2011 Dec; 13(45):20188-98. PubMed ID: 21993332 [TBL] [Abstract][Full Text] [Related]
19. NSAID injury to the gastrointestinal tract: evidence that NSAIDs interact with phospholipids to weaken the hydrophobic surface barrier and induce the formation of unstable pores in membranes. Lichtenberger LM; Zhou Y; Dial EJ; Raphael RM J Pharm Pharmacol; 2006 Nov; 58(11):1421-8. PubMed ID: 17132203 [TBL] [Abstract][Full Text] [Related]
20. Comparative computer simulation study of cholesterol in hydrated unary and binary lipid bilayers and in an anhydrous crystal. Plesnar E; Subczynski WK; Pasenkiewicz-Gierula M J Phys Chem B; 2013 Jul; 117(29):8758-69. PubMed ID: 23848956 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]