BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 21568334)

  • 1. Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide.
    Meher SK; Justin P; Rao GR
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):2063-73. PubMed ID: 21568334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale morphology dependent pseudocapacitance of NiO: Influence of intercalating anions during synthesis.
    Meher SK; Justin P; Rao GR
    Nanoscale; 2011 Feb; 3(2):683-92. PubMed ID: 21180732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supercapacitor studies on NiO nanoflakes synthesized through a microwave route.
    Vijayakumar S; Nagamuthu S; Muralidharan G
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2188-96. PubMed ID: 23459412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nickel oxide nanotubes: synthesis and electrochemical performance for use in lithium ion batteries.
    Needham SA; Wang GX; Liu HK; Yang L
    J Nanosci Nanotechnol; 2006 Jan; 6(1):77-81. PubMed ID: 16573073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of microwave power on the preparation of NiO nanoflakes for enhanced magnetic and supercapacitor applications.
    Anandha Babu G; Ravi G; Mahalingam T; Kumaresavanji M; Hayakawa Y
    Dalton Trans; 2015 Mar; 44(10):4485-97. PubMed ID: 25649630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of hierarchical Ni(OH)(2) and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water.
    Cheng B; Le Y; Cai W; Yu J
    J Hazard Mater; 2011 Jan; 185(2-3):889-97. PubMed ID: 21030146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile synthesis of porous ZnO-NiO composite micropolyhedrons and their application for high power supercapacitor electrode materials.
    Pang H; Ma Y; Li G; Chen J; Zhang J; Zheng H; Du W
    Dalton Trans; 2012 Nov; 41(43):13284-91. PubMed ID: 23023820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid microwave-assisted green synthesis of 3D hierarchical flower-shaped NiCo₂O₄ microsphere for high-performance supercapacitor.
    Lei Y; Li J; Wang Y; Gu L; Chang Y; Yuan H; Xiao D
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1773-80. PubMed ID: 24444791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct large-scale synthesis of 3D hierarchical mesoporous NiO microspheres as high-performance anode materials for lithium ion batteries.
    bai Z; Ju Z; Guo C; Qian Y; Tang B; Xiong S
    Nanoscale; 2014 Mar; 6(6):3268-73. PubMed ID: 24509514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of NiO on microstructure and electrical property of solid oxide fuel cell anode.
    Li Y; Luo ZY; Yu CJ; Luo D; Xu ZA; Cen KF
    J Zhejiang Univ Sci B; 2005 Nov; 6(11):1124-9. PubMed ID: 16252348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Template-free approach to synthesize hierarchical porous nickel cobalt oxides for supercapacitors.
    Chang J; Sun J; Xu C; Xu H; Gao L
    Nanoscale; 2012 Nov; 4(21):6786-91. PubMed ID: 23001031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant-assisted morphological tuning of hierarchical CuO thin films for electrochemical supercapacitors.
    Dubal DP; Gund GS; Holze R; Jadhav HS; Lokhande CD; Park CJ
    Dalton Trans; 2013 May; 42(18):6459-67. PubMed ID: 23471154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The inherent electrochemistry of nickel/nickel-oxide nanoparticles.
    Giovanni M; Ambrosi A; Pumera M
    Chem Asian J; 2012 Apr; 7(4):702-6. PubMed ID: 22331627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomolecule-assisted synthesis and electrochemical hydrogen storage of porous spongelike Ni3S2 nanostructures grown directly on nickel foils.
    Zhang B; Ye X; Dai W; Hou W; Xie Y
    Chemistry; 2006 Mar; 12(8):2337-42. PubMed ID: 16389618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dye sensitised solar cells with nickel oxide photocathodes prepared via scalable microwave sintering.
    Gibson EA; Awais M; Dini D; Dowling DP; Pryce MT; Vos JG; Boschloo G; Hagfeldt A
    Phys Chem Chem Phys; 2013 Feb; 15(7):2411-20. PubMed ID: 23301246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous Cu-NiO modified glass carbon electrode enhanced nonenzymatic glucose electrochemical sensors.
    Zhang X; Gu A; Wang G; Huang Y; Ji H; Fang B
    Analyst; 2011 Dec; 136(24):5175-80. PubMed ID: 22029045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Green and facile synthesis of nickel oxide-porous carbon composite as improved electrochemical electrodes for supercapacitor application from banana peel waste.
    Al Kiey SA; Hasanin MS
    Environ Sci Pollut Res Int; 2021 Dec; 28(47):66888-66900. PubMed ID: 34240303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchically porous nickel oxide nanosheets grown on nickel foam prepared by one-step in situ anodization for high-performance supercapacitors.
    Yang L; Qian L; Tian X; Li J; Dai J; Guo Y; Xiao D
    Chem Asian J; 2014 Jun; 9(6):1579-85. PubMed ID: 24771534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Architectured morphologies of chemically prepared NiO/MWCNTs nanohybrid thin films for high performance supercapacitors.
    Gund GS; Dubal DP; Shinde SS; Lokhande CD
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3176-88. PubMed ID: 24548054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of porous β-Co(OH)2 architecture at room temperature: a high performance supercapacitor.
    Mondal C; Ganguly M; Manna PK; Yusuf SM; Pal T
    Langmuir; 2013 Jul; 29(29):9179-87. PubMed ID: 23806182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.