BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 21568350)

  • 1. Gradient doping of conducting polymer films by means of bipolar electrochemistry.
    Ishiguro Y; Inagi S; Fuchigami T
    Langmuir; 2011 Jun; 27(11):7158-62. PubMed ID: 21568350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-controlled application of electric potential on a conducting polymer "canvas".
    Ishiguro Y; Inagi S; Fuchigami T
    J Am Chem Soc; 2012 Mar; 134(9):4034-6. PubMed ID: 22353050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical evaluation of poly(3,4-ethylenedioxythiophene) films doped with bacteria based on viability analysis.
    Le DQ; Tokonami S; Nishino T; Shiigi H; Nagaoka T
    Bioelectrochemistry; 2015 Oct; 105():50-5. PubMed ID: 25984659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical post-functionalization of conducting polymers.
    Inagi S; Fuchigami T
    Macromol Rapid Commun; 2014 May; 35(9):854-67. PubMed ID: 24590504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Resettable Keypad Lock with Visible Readout Based on Closed Bipolar Electrochemistry and Electrochromic Poly(3-methylthiophene) Films.
    Wang L; Lian W; Liu H
    Chemistry; 2016 Mar; 22(14):4825-32. PubMed ID: 26914514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rational design for the selective detection of dopamine using conducting polymers.
    Fabregat G; Casanovas J; Redondo E; Armelin E; Alemán C
    Phys Chem Chem Phys; 2014 May; 16(17):7850-61. PubMed ID: 24643641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designed antifouling peptides planted in conducting polymers through controlled partial doping for electrochemical detection of biomarkers in human serum.
    Han R; Wang G; Xu Z; Zhang L; Li Q; Han Y; Luo X
    Biosens Bioelectron; 2020 Sep; 164():112317. PubMed ID: 32479342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemistry of conductive polymers. 45. Nanoscale conductivity of PEDOT and PEDOT:PSS composite films studied by current-sensing AFM.
    Lee HJ; Lee J; Park SM
    J Phys Chem B; 2010 Mar; 114(8):2660-6. PubMed ID: 20141126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroactive species-doped poly(3,4-ethylenedioxythiophene) films: enhanced sensitivity for electrochemical simultaneous determination of vitamins B2, B6 and C.
    Nie T; Xu JK; Lu LM; Zhang KX; Bai L; Wen YP
    Biosens Bioelectron; 2013 Dec; 50():244-50. PubMed ID: 23871872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of dopants on the biomechanical properties of conducting polymer films on platinum electrodes.
    Baek S; Green RA; Poole-Warren LA
    J Biomed Mater Res A; 2014 Aug; 102(8):2743-54. PubMed ID: 24027227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge storage in polymer acid-doped polyaniline-based layer-by-layer electrodes.
    Jeon JW; O'Neal J; Shao L; Lutkenhaus JL
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10127-36. PubMed ID: 24060459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymer films on electrodes: investigation of ion transport at poly(3,4-ethylenedioxythiophene) films by scanning electrochemical microscopy.
    Yang N; Zoski CG
    Langmuir; 2006 Dec; 22(25):10338-47. PubMed ID: 17129001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conducting polymer transistors making use of activated carbon gate electrodes.
    Tang H; Kumar P; Zhang S; Yi Z; Crescenzo GD; Santato C; Soavi F; Cicoira F
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):969-73. PubMed ID: 25510960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale measurements of conducting domains and current-voltage characteristics of chemically deposited polyaniline films.
    Wu CG; Chang SS
    J Phys Chem B; 2005 Jan; 109(2):825-32. PubMed ID: 16866448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(3,4-ethylenedioxythiophene):dextran sulfate (PEDOT:DS) - a highly processable conductive organic biopolymer.
    Harman DG; Gorkin R; Stevens L; Thompson B; Wagner K; Weng B; Chung JH; In Het Panhuis M; Wallace GG
    Acta Biomater; 2015 Mar; 14():33-42. PubMed ID: 25484333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution-processed poly(3,4-ethylenedioxythiophene) thin films as transparent conductors: effect of p-toluenesulfonic acid in dimethyl sulfoxide.
    Mukherjee S; Singh R; Gopinathan S; Murugan S; Gawali S; Saha B; Biswas J; Lodha S; Kumar A
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17792-803. PubMed ID: 25230160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ Wilhelmy balance surface energy determination of poly(3-hexylthiophene) and poly(3,4-ethylenedioxythiophene) during electrochemical doping-dedoping.
    Wang X; Ederth T; Inganäs O
    Langmuir; 2006 Oct; 22(22):9287-94. PubMed ID: 17042544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct electrochemistry and electrocatalysis of anthraquinone-monosulfonate/polyaniline hybrid film synthesized by a novel electrochemical doping-dedoping-redoping method on pre-activated spectroscopically pure graphite surface.
    Zhang G; Yang F
    Phys Chem Chem Phys; 2011 Feb; 13(8):3291-302. PubMed ID: 21212886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Versatile Method for Producing 2D and 3D Conductive Biomaterial Composites Using Sequential Chemical and Electrochemical Polymerization.
    Severt SY; Ostrovsky-Snider NA; Leger JM; Murphy AR
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25281-8. PubMed ID: 26544990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the thermoelectric properties of polymers: application to PEDOT and polypyrrole.
    Culebras M; Uriol B; Gómez CM; Cantarero A
    Phys Chem Chem Phys; 2015 Jun; 17(23):15140-5. PubMed ID: 25990660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.