These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 21568376)

  • 41. Perceptually optimized gain function for cochlear implant signal-to-noise ratio based noise reduction.
    Mauger SJ; Dawson PW; Hersbach AA
    J Acoust Soc Am; 2012 Jan; 131(1):327-36. PubMed ID: 22280595
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cochlear implant users' spectral ripple resolution.
    Jeon EK; Turner CW; Karsten SA; Henry BA; Gantz BJ
    J Acoust Soc Am; 2015 Oct; 138(4):2350-8. PubMed ID: 26520316
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evidence for independent time-unit processing of speech using noise promoting or suppressing masking release (L).
    Healy EW; Youngdahl CL; Apoux F
    J Acoust Soc Am; 2014 Feb; 135(2):581-4. PubMed ID: 25234867
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fundamental frequency discrimination and speech perception in noise in cochlear implant simulations.
    Carroll J; Zeng FG
    Hear Res; 2007 Sep; 231(1-2):42-53. PubMed ID: 17604581
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Assessing the Relationship Between the Electrically Evoked Compound Action Potential and Speech Recognition Abilities in Bilateral Cochlear Implant Recipients.
    Schvartz-Leyzac KC; Pfingst BE
    Ear Hear; 2018; 39(2):344-358. PubMed ID: 28885234
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Discrimination of intonation contours by adolescents with cochlear implants.
    Holt CM; McDermott HJ
    Int J Audiol; 2013 Dec; 52(12):808-15. PubMed ID: 24053225
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recognition performance on words interrupted (10 ips, 50% duty cycle) with two interruption patterns referenced to word onset: Young listeners with normal hearing for pure tones and older listeners with sensorineural hearing loss.
    Wilson RH; Irish SE
    Int J Audiol; 2015; 54(12):933-41. PubMed ID: 26252182
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comodulation masking release in speech identification with real and simulated cochlear-implant hearing.
    Ihlefeld A; Shinn-Cunningham BG; Carlyon RP
    J Acoust Soc Am; 2012 Feb; 131(2):1315-24. PubMed ID: 22352505
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Speech understanding performance of cochlear implant subjects using time-frequency masking-based noise reduction.
    Qazi Ou; van Dijk B; Moonen M; Wouters J
    IEEE Trans Biomed Eng; 2012 May; 59(5):1364-73. PubMed ID: 22345522
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Processing F0 with cochlear implants: Modulation frequency discrimination and speech intonation recognition.
    Chatterjee M; Peng SC
    Hear Res; 2008 Jan; 235(1-2):143-56. PubMed ID: 18093766
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Categorical perception of intonation contrasts: effects of listeners' language background.
    Liu C; Rodriguez A
    J Acoust Soc Am; 2012 Jun; 131(6):EL427-33. PubMed ID: 22713017
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Can older adults enhance the intelligibility of their speech?
    Smiljanic R
    J Acoust Soc Am; 2013 Feb; 133(2):EL129-35. PubMed ID: 23363193
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhancing speech intelligibility: interactions among context, modality, speech style, and masker.
    Van Engen KJ; Phelps JE; Smiljanic R; Chandrasekaran B
    J Speech Lang Hear Res; 2014 Oct; 57(5):1908-18. PubMed ID: 24687206
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Investigation of a matrix sentence test in noise: reproducibility and discrimination function in cochlear implant patients.
    Hey M; Hocke T; Hedderich J; Müller-Deile J
    Int J Audiol; 2014 Dec; 53(12):895-902. PubMed ID: 25140602
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spatial release from masking in children with bilateral cochlear implants and with normal hearing: Effect of target-interferer similarity.
    Misurelli SM; Litovsky RY
    J Acoust Soc Am; 2015 Jul; 138(1):319-31. PubMed ID: 26233032
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Use of an adaptive-bandwidth protocol to measure importance functions for simulated cochlear implant frequency channels.
    Whitmal NA; DeRoy K
    J Acoust Soc Am; 2012 Feb; 131(2):1359-70. PubMed ID: 22352509
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of F0 contour on perception of Mandarin Chinese speech against masking.
    Wu M
    PLoS One; 2019; 14(1):e0209976. PubMed ID: 30605452
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spoken word recognition in adolescent cochlear implant users during quiet and multispeaker babble conditions.
    Tobey EA; Shin S; Sundarrajan M; Geers AE
    Otol Neurotol; 2011 Apr; 32(3):413-8. PubMed ID: 21307815
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of spectral smearing on the intelligibility of sentences in the presence of interfering speech.
    Baer T; Moore BC
    J Acoust Soc Am; 1994 Apr; 95(4):2277-80. PubMed ID: 8201124
    [No Abstract]   [Full Text] [Related]  

  • 60. The role of fundamental frequency contours in the perception of speech against interfering speech.
    Binns C; Culling JF
    J Acoust Soc Am; 2007 Sep; 122(3):1765. PubMed ID: 17927436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.