These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 21568378)

  • 21. Practical ranges of loudness levels of various types of environmental noise, including traffic noise, aircraft noise, and industrial noise.
    Salomons EM; Janssen SA
    Int J Environ Res Public Health; 2011 Jun; 8(6):1847-64. PubMed ID: 21776205
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of rural soundscapes with high-speed train noise.
    Lee PJ; Hong JY; Jeon JY
    Sci Total Environ; 2014 Jun; 482-483():432-9. PubMed ID: 23953404
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Micromachined optical microphone structures with low thermal-mechanical noise levels.
    Hall NA; Okandan M; Littrell R; Bicen B; Degertekin FL
    J Acoust Soc Am; 2007 Oct; 122(4):2031-7. PubMed ID: 17902840
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physically constrained maximum likelihood mode filtering.
    Papp JC; Preisig JC; Morozov AK
    J Acoust Soc Am; 2010 Apr; 127(4):2385-91. PubMed ID: 20370021
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comment on "Acoustic chaos in a duct with two separate sound sources" [J. Acoust. Soc. Am. 110, 120-126 (2001)].
    Castrejón-Pita AA; Castrejón-Pita JR; Huelsz G; Sarmiento-Galán A
    J Acoust Soc Am; 2008 Nov; 124(5):2702-5. PubMed ID: 19045755
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pitch detection of dynamic iterated rippled noise by humans and a modified auditory model.
    Denham S
    Biosystems; 2005; 79(1-3):199-206. PubMed ID: 15649605
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Covariance-based approaches to aeroacoustic noise source analysis.
    Du L; Xu L; Li J; Guo B; Stoica P; Bahr C; Cattafesta LN
    J Acoust Soc Am; 2010 Nov; 128(5):2877-87. PubMed ID: 21110583
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Children's annoyance reactions to aircraft and road traffic noise.
    van Kempen EE; van Kamp I; Stellato RK; Lopez-Barrio I; Haines MM; Nilsson ME; Clark C; Houthuijs D; Brunekreef B; Berglund B; Stansfeld SA
    J Acoust Soc Am; 2009 Feb; 125(2):895-904. PubMed ID: 19206866
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extension of deconvolution algorithms for the mapping of moving acoustic sources.
    Fleury V; Bulté J
    J Acoust Soc Am; 2011 Mar; 129(3):1417-28. PubMed ID: 21428506
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-time multiband dynamic compression and noise reduction for binaural hearing aids.
    Kollmeier B; Peissig J; Hohmann V
    J Rehabil Res Dev; 1993; 30(1):82-94. PubMed ID: 8263832
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a Deep Neural Network for Speeding Up a Model of Loudness for Time-Varying Sounds.
    Schlittenlacher J; Turner RE; Moore BCJ
    Trends Hear; 2020; 24():2331216520943074. PubMed ID: 32853098
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temporal weighting in loudness of broadband and narrowband signals.
    Rennies J; Verhey JL
    J Acoust Soc Am; 2009 Sep; 126(3):951-4. PubMed ID: 19739706
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Illusory spectrotemporal ripples created with binaurally correlated noise.
    Nassiri R; Escabí MA
    J Acoust Soc Am; 2008 Apr; 123(4):EL92-8. PubMed ID: 18396927
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Perceived loudness of speech based on the characteristics of glottal excitation source.
    Seshadri G; Yegnanarayana B
    J Acoust Soc Am; 2009 Oct; 126(4):2061-71. PubMed ID: 19813815
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Digital signal processing (DSP) applications for multiband loudness correction digital hearing aids and cochlear implants.
    Dillier N; Frölich T; Kompis M; Bögli H; Lai WK
    J Rehabil Res Dev; 1993; 30(1):95-109. PubMed ID: 8263833
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spectral loudness summation for sequences of short noise bursts.
    Verhey JL; Uhlemann M
    J Acoust Soc Am; 2008 Feb; 123(2):925-34. PubMed ID: 18247895
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Incorporation of loudness measures in active noise control.
    Sommerfeldt SD; Samuels TO
    J Acoust Soc Am; 2001 Feb; 109(2):591-9. PubMed ID: 11248966
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trends in aircraft noise annoyance: the role of study and sample characteristics.
    Janssen SA; Vos H; van Kempen EE; Breugelmans OR; Miedema HM
    J Acoust Soc Am; 2011 Apr; 129(4):1953-62. PubMed ID: 21476651
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Testing a theory of aircraft noise annoyance: a structural equation analysis.
    Kroesen M; Molin EJ; van Wee B
    J Acoust Soc Am; 2008 Jun; 123(6):4250-60. PubMed ID: 18537376
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of background noise levels on community annoyance from aircraft noise.
    Lim C; Kim J; Hong J; Lee S
    J Acoust Soc Am; 2008 Feb; 123(2):766-71. PubMed ID: 18247881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.