These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21568415)

  • 21. Investigation of the 2f
    Wen H; Bowling T; Meaud J
    Hear Res; 2018 Aug; 365():127-140. PubMed ID: 29801982
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Negative Middle Ear Pressure and Composite and Component Distortion Product Otoacoustic Emissions.
    Thompson S; Henin S; Long GR
    Ear Hear; 2015; 36(6):695-704. PubMed ID: 26049553
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reducing reflected contributions to ear-canal distortion product otoacoustic emissions in humans.
    Johnson TA; Neely ST; Kopun JG; Gorga MP
    J Acoust Soc Am; 2006 Jun; 119(6):3896-907. PubMed ID: 16838533
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distortion-product source unmixing: a test of the two-mechanism model for DPOAE generation.
    Kalluri R; Shera CA
    J Acoust Soc Am; 2001 Feb; 109(2):622-37. PubMed ID: 11248969
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contralateral acoustic stimulation alters the magnitude and phase of distortion product otoacoustic emissions.
    Deeter R; Abel R; Calandruccio L; Dhar S
    J Acoust Soc Am; 2009 Nov; 126(5):2413-24. PubMed ID: 19894823
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An additional source of distortion-product otoacoustic emissions from perturbation of nonlinear force by reflection from inhomogeneities.
    Vetešník A; Vencovský V; Gummer AW
    J Acoust Soc Am; 2022 Sep; 152(3):1660. PubMed ID: 36182298
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Suppression and enhancement of distortion-product otoacoustic emissions by interference tones above f(2). II. Findings in humans.
    Martin GK; Villasuso EI; Stagner BB; Lonsbury-Martin BL
    Hear Res; 2003 Mar; 177(1-2):111-22. PubMed ID: 12618323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of primary frequencies ratio on distortion product otoacoustic emissions amplitude. II. Interrelations between multicomponent DPOAEs, tone-burst-evoked OAEs, and spontaneous OAEs.
    Moulin A
    J Acoust Soc Am; 2000 Mar; 107(3):1471-86. PubMed ID: 10738802
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distortion product otoacoustic emissions provide clues hearing mechanisms in the frog ear.
    Vassilakis PN; Meenderink SW; Narins PM
    J Acoust Soc Am; 2004 Dec; 116(6):3713-26. PubMed ID: 15658721
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for multiple DPOAE components based upon group delay of the 2f(1)-f(2) distortion in the gerbil.
    Faulstich M; Kössl M
    Hear Res; 2000 Feb; 140(1-2):99-110. PubMed ID: 10675638
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of negative middle ear pressure on distortion product otoacoustic emissions and application of a compensation procedure in humans.
    Sun XM; Shaver MD
    Ear Hear; 2009 Apr; 30(2):191-202. PubMed ID: 19194291
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distortion product otoacoustic emission (2f1-f2) suppression in 3-month-old infants: evidence for postnatal maturation of human cochlear function?
    Abdala C
    J Acoust Soc Am; 2004 Dec; 116(6):3572-80. PubMed ID: 15658708
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measuring distortion product otoacoustic emissions using continuously sweeping primaries.
    Long GR; Talmadge CL; Lee J
    J Acoust Soc Am; 2008 Sep; 124(3):1613-26. PubMed ID: 19045653
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Indications of different distortion product otoacoustic emission mechanisms from a detailed f1,f2 area study.
    Knight RD; Kemp DT
    J Acoust Soc Am; 2000 Jan; 107(1):457-73. PubMed ID: 10641654
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Time-frequency analyses of transient-evoked stimulus-frequency and distortion-product otoacoustic emissions: testing cochlear model predictions.
    Konrad-Martin D; Keefe DH
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2021-43. PubMed ID: 14587602
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spectral shapes of forward and reverse transfer functions between ear canal and cochlea estimated using DPOAE input/output functions.
    Keefe DH
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 1):249-60. PubMed ID: 11831799
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans.
    Sun XM
    Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Suppression and enhancement of distortion-product otoacoustic emissions by interference tones above f(2). I. Basic findings in rabbits.
    Martin GK; Stagner BB; Jassir D; Telischi FF; Lonsbury-Martin BL
    Hear Res; 1999 Oct; 136(1-2):105-23. PubMed ID: 10511630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gender, music, and distortion product otoacoustic emission components.
    Torre P; Grace J; Hansen C; Millman P; Martin H
    Ear Hear; 2013; 34(6):e74-81. PubMed ID: 23698624
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wave and place fixed DPOAE maps of the human ear.
    Knight RD; Kemp DT
    J Acoust Soc Am; 2001 Apr; 109(4):1513-25. PubMed ID: 11325123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.