These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21568495)

  • 1. Comparing modern density functionals for conjugated polymer band structures: screened hybrid, Minnesota, and Rung 3.5 approximations.
    Janesko BG
    J Chem Phys; 2011 May; 134(18):184105. PubMed ID: 21568495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonspherical model density matrices for Rung 3.5 density functionals.
    Janesko BG; Aguero A
    J Chem Phys; 2012 Jan; 136(2):024111. PubMed ID: 22260568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rung 3.5 density functionals.
    Janesko BG
    J Chem Phys; 2010 Sep; 133(10):104103. PubMed ID: 20849160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Practical auxiliary basis implementation of Rung 3.5 functionals.
    Janesko BG; Scalmani G; Frisch MJ
    J Chem Phys; 2014 Jul; 141(3):034103. PubMed ID: 25053297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic electronic materials: recent advances in the DFT description of the ground and excited states using tuned range-separated hybrid functionals.
    Körzdörfer T; Brédas JL
    Acc Chem Res; 2014 Nov; 47(11):3284-91. PubMed ID: 24784485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic exchange couplings evaluated with Rung 3.5 density functionals.
    Phillips JJ; Peralta JE; Janesko BG
    J Chem Phys; 2011 Jun; 134(21):214101. PubMed ID: 21663338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical study of the electronic properties of narrow single-walled carbon nanotubes: beyond the local density approximation.
    Barone V; Scuseria GE
    J Chem Phys; 2004 Dec; 121(21):10376-9. PubMed ID: 15549916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local hybrid functionals: an assessment for thermochemical kinetics.
    Kaupp M; Bahmann H; Arbuznikov AV
    J Chem Phys; 2007 Nov; 127(19):194102. PubMed ID: 18035874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient hybrid density functional calculations in solids: assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional.
    Heyd J; Scuseria GE
    J Chem Phys; 2004 Jul; 121(3):1187-92. PubMed ID: 15260659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screened hybrid density functionals applied to solids.
    Paier J; Marsman M; Hummer K; Kresse G; Gerber IC; Angyán JG
    J Chem Phys; 2006 Apr; 124(15):154709. PubMed ID: 16674253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals.
    Vydrov OA; Heyd J; Krukau AV; Scuseria GE
    J Chem Phys; 2006 Aug; 125(7):074106. PubMed ID: 16942321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional.
    Heyd J; Peralta JE; Scuseria GE; Martin RL
    J Chem Phys; 2005 Nov; 123(17):174101. PubMed ID: 16375511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-Scale Benchmark of Exchange-Correlation Functionals for the Determination of Electronic Band Gaps of Solids.
    Borlido P; Aull T; Huran AW; Tran F; Marques MAL; Botti S
    J Chem Theory Comput; 2019 Sep; 15(9):5069-5079. PubMed ID: 31306006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry.
    Furche F; Perdew JP
    J Chem Phys; 2006 Jan; 124(4):044103. PubMed ID: 16460145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple nonlocal model for exchange.
    Janesko BG
    J Chem Phys; 2009 Dec; 131(23):234111. PubMed ID: 20025318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study of CeO2 and Ce2O3 using a screened hybrid density functional.
    Hay PJ; Martin RL; Uddin J; Scuseria GE
    J Chem Phys; 2006 Jul; 125(3):34712. PubMed ID: 16863378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can the hybrid meta GGA and DFT-D methods describe the stacking interactions in conjugated polymers?
    Dkhissi A; Ducéré JM; Blossey R; Pouchan C
    J Comput Chem; 2009 Jun; 30(8):1179-84. PubMed ID: 18785244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-range-corrected Rung 3.5 density functional approximations.
    Janesko BG; Proynov E; Scalmani G; Frisch MJ
    J Chem Phys; 2018 Mar; 148(10):104112. PubMed ID: 29544289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions.
    Goerigk L; Grimme S
    Phys Chem Chem Phys; 2011 Apr; 13(14):6670-88. PubMed ID: 21384027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation effects of π electrons on the band structures of conjugated polymers using the self-consistent GW approximation with vertex corrections.
    Chang YW; Jin BY
    J Chem Phys; 2012 Jan; 136(2):024110. PubMed ID: 22260567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.