These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 21568502)
1. State-to-state quantum dynamics of the H + HBr reaction: competition between the abstraction and exchange reactions. Xie C; Jiang B; Xie D J Chem Phys; 2011 May; 134(18):184303. PubMed ID: 21568502 [TBL] [Abstract][Full Text] [Related]
2. A time-dependent quantum dynamical study of the H + HBr reaction. Fu B; Zhang DH J Phys Chem A; 2007 Sep; 111(38):9516-21. PubMed ID: 17696330 [TBL] [Abstract][Full Text] [Related]
3. Theoretical study of dynamics for the abstraction reaction H' + HBr(v=0, j=0) --> H'H + Br. Zhang W; Cong S; Zhang C; Xu X; Chen M J Phys Chem A; 2009 Apr; 113(16):4192-7. PubMed ID: 19296627 [TBL] [Abstract][Full Text] [Related]
4. Quantum and quasiclassical state-to-state dynamics of the NH + H reaction: competition between abstraction and exchange channels. Li Z; Xie C; Jiang B; Xie D; Liu L; Sun Z; Zhang DH; Guo H J Chem Phys; 2011 Apr; 134(13):134303. PubMed ID: 21476751 [TBL] [Abstract][Full Text] [Related]
5. Energy dependence of differential and integral cross sections for O((1)D)+H(2)(upsilon(i)=0,j(i)=0)-->OH(upsilon(f),j(f))+H reaction. Lin SY; Guo H J Chem Phys; 2008 Sep; 129(12):124311. PubMed ID: 19045027 [TBL] [Abstract][Full Text] [Related]
6. Rotational dependence of the proton-transfer reaction HBr+ + CO2-->HOCO+ + Br. I. Energy versus angular momentum effects. Paetow L; Unger F; Beichel W; Frenking G; Weitzel KM J Chem Phys; 2010 May; 132(17):174305. PubMed ID: 20459167 [TBL] [Abstract][Full Text] [Related]
7. The hydrogen abstraction reaction H + CH4. II. Theoretical investigation of the kinetics and dynamics. Espinosa-García J; Nyman G; Corchado JC J Chem Phys; 2009 May; 130(18):184315. PubMed ID: 19449929 [TBL] [Abstract][Full Text] [Related]
8. State-to-state reaction probabilities for the H+O2(v,j)-->O+OH(v',j') reaction on three potential energy surfaces. Hankel M; Smith SC; Meijer AJ J Chem Phys; 2007 Aug; 127(6):064316. PubMed ID: 17705605 [TBL] [Abstract][Full Text] [Related]
9. New ab initio potential energy surface for BrH2 and rate constants for the H + HBr → H2 + Br abstraction reaction. Jiang B; Xie C; Xie D J Chem Phys; 2011 Mar; 134(11):114301. PubMed ID: 21428613 [TBL] [Abstract][Full Text] [Related]
10. Quantum dynamics of the S+OH→SO+H reaction. Jorfi M; Honvault P J Chem Phys; 2010 Oct; 133(14):144315. PubMed ID: 20950008 [TBL] [Abstract][Full Text] [Related]
11. Accurate quantum mechanical calculations of differential and integral cross sections and rate constant for the O+OH reaction using an ab initio potential energy surface. Lin SY; Guo H; Honvault P; Xu C; Xie D J Chem Phys; 2008 Jan; 128(1):014303. PubMed ID: 18190192 [TBL] [Abstract][Full Text] [Related]
12. H+ versus D+) transfer from HOD+ to N2: mode- and bond-selective effects. Bell DM; Boyle JM; Anderson SL J Chem Phys; 2011 Jul; 135(4):044305. PubMed ID: 21806117 [TBL] [Abstract][Full Text] [Related]
13. Ab initio and dynamics study of the O(3P) + NH3 and O(3P) + N2H4 reactions at hyperthermal collision energies. Troya D; Mosch M; O'Neill KA J Phys Chem A; 2009 Dec; 113(50):13863-70. PubMed ID: 19886614 [TBL] [Abstract][Full Text] [Related]
14. Product spin-orbit state resolved dynamics of the H+H2O and H+D2O abstraction reactions. Brouard M; Burak I; Marinakis S; Rubio Lago L; Tampkins P; Vallance C J Chem Phys; 2004 Dec; 121(21):10426-36. PubMed ID: 15549923 [TBL] [Abstract][Full Text] [Related]
15. A comparative study of the Si+O(2)-->SiO+O reaction dynamics from quasiclassical trajectory and statistical based methods. Dayou F; Larrégaray P; Bonnet L; Rayez JC; Arenas PN; González-Lezana T J Chem Phys; 2008 May; 128(17):174307. PubMed ID: 18465922 [TBL] [Abstract][Full Text] [Related]
16. Quantum mechanical calculation of energy dependence of OCl/OH product branching ratio and product quantum state distributions for the O(1D) + HCl reaction on all three contributing electronic state potential energy surfaces. Yang H; Han KL; Nanbu S; Nakamura H; Balint-Kurti GG; Zhang H; Smith SC; Hankel M J Phys Chem A; 2008 Aug; 112(34):7947-60. PubMed ID: 18683915 [TBL] [Abstract][Full Text] [Related]
17. Rotational dependence of the proton-transfer reaction HBr+ + CO2 → HOCO+ + Br. II. Comparison of HBr+ (2Π(3/2)) and HBr+ (2Π(1/2)). Paetow L; Unger F; Beutel B; Weitzel KM J Chem Phys; 2010 Dec; 133(23):234301. PubMed ID: 21186865 [TBL] [Abstract][Full Text] [Related]
18. H + CD4 abstraction reaction dynamics: product energy partitioning. Hu W; Lendvay G; Troya D; Schatz GC; Camden JP; Bechtel HA; Brown DJ; Martin MR; Zare RN J Phys Chem A; 2006 Mar; 110(9):3017-27. PubMed ID: 16509623 [TBL] [Abstract][Full Text] [Related]
19. Quantum dynamics of Br + HD reaction. Panda AN J Phys Chem A; 2008 Jun; 112(24):5327-31. PubMed ID: 18500791 [TBL] [Abstract][Full Text] [Related]
20. Negative collision energy dependence of Br formation in the OH + HBr reaction. Che DC; Matsuo T; Yano Y; Bonnet L; Kasai T Phys Chem Chem Phys; 2008 Mar; 10(10):1419-23. PubMed ID: 18309398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]