These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 21568562)

  • 1. Predicting catastrophes in nonlinear dynamical systems by compressive sensing.
    Wang WX; Yang R; Lai YC; Kovanis V; Grebogi C
    Phys Rev Lett; 2011 Apr; 106(15):154101. PubMed ID: 21568562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forecasting the future: is it possible for adiabatically time-varying nonlinear dynamical systems?
    Yang R; Lai YC; Grebogi C
    Chaos; 2012 Sep; 22(3):033119. PubMed ID: 23020458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finding nonlinear system equations and complex network structures from data: A sparse optimization approach.
    Lai YC
    Chaos; 2021 Aug; 31(8):082101. PubMed ID: 34470223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reservoir computing as digital twins for nonlinear dynamical systems.
    Kong LW; Weng Y; Glaz B; Haile M; Lai YC
    Chaos; 2023 Mar; 33(3):033111. PubMed ID: 37003826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovering governing equations from data by sparse identification of nonlinear dynamical systems.
    Brunton SL; Proctor JL; Kutz JN
    Proc Natl Acad Sci U S A; 2016 Apr; 113(15):3932-7. PubMed ID: 27035946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forecasting synchronizability of complex networks from data.
    Su RQ; Ni X; Wang WX; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056220. PubMed ID: 23004856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting phase and sensing phase coherence in chaotic systems with machine learning.
    Zhang C; Jiang J; Qu SX; Lai YC
    Chaos; 2020 Aug; 30(8):083114. PubMed ID: 32872815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling nonlinear dynamical systems into arbitrary states using machine learning.
    Haluszczynski A; Räth C
    Sci Rep; 2021 Jun; 11(1):12991. PubMed ID: 34155228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of dimension for nonlinear dynamical systems.
    Harrington HA; Van Gorder RA
    Nonlinear Dyn; 2017; 88(1):715-734. PubMed ID: 32226227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disentangling regular and chaotic motion in the standard map using complex network analysis of recurrences in phase space.
    Zou Y; Donner RV; Thiel M; Kurths J
    Chaos; 2016 Feb; 26(2):023120. PubMed ID: 26931601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI.
    Koppe G; Toutounji H; Kirsch P; Lis S; Durstewitz D
    PLoS Comput Biol; 2019 Aug; 15(8):e1007263. PubMed ID: 31433810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting critical transitions in multiscale dynamical systems using reservoir computing.
    Lim SH; Theo Giorgini L; Moon W; Wettlaufer JS
    Chaos; 2020 Dec; 30(12):123126. PubMed ID: 33380032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control.
    Brunton SL; Brunton BW; Proctor JL; Kutz JN
    PLoS One; 2016; 11(2):e0150171. PubMed ID: 26919740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restoring chaos using deep reinforcement learning.
    Vashishtha S; Verma S
    Chaos; 2020 Mar; 30(3):031102. PubMed ID: 32237764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS.
    Ott W; Rivas MA; West J
    J Stat Phys; 2015 Dec; 161(5):1098-1111. PubMed ID: 28066028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kernel-based parameter estimation of dynamical systems with unknown observation functions.
    Lindenbaum O; Sagiv A; Mishne G; Talmon R
    Chaos; 2021 Apr; 31(4):043118. PubMed ID: 34251227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting amplitude death with machine learning.
    Xiao R; Kong LW; Sun ZK; Lai YC
    Phys Rev E; 2021 Jul; 104(1-1):014205. PubMed ID: 34412238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting observed and hidden extreme events in complex nonlinear dynamical systems with partial observations and short training time series.
    Chen N; Majda AJ
    Chaos; 2020 Mar; 30(3):033101. PubMed ID: 32237755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time series analyses of breathing patterns of lung cancer patients using nonlinear dynamical system theory.
    Tewatia DK; Tolakanahalli RP; Paliwal BR; Tomé WA
    Phys Med Biol; 2011 Apr; 56(7):2161-81. PubMed ID: 21389355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate detection of hierarchical communities in complex networks based on nonlinear dynamical evolution.
    Zhuo Z; Cai SM; Tang M; Lai YC
    Chaos; 2018 Apr; 28(4):043119. PubMed ID: 31906645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.