These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 21568572)

  • 1. Strain-dependent splitting of the double-resonance Raman scattering band in graphene.
    Yoon D; Son YW; Cheong H
    Phys Rev Lett; 2011 Apr; 106(15):155502. PubMed ID: 21568572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman 2D-band splitting in graphene: theory and experiment.
    Frank O; Mohr M; Maultzsch J; Thomsen C; Riaz I; Jalil R; Novoselov KS; Tsoukleri G; Parthenios J; Papagelis K; Kavan L; Galiotis C
    ACS Nano; 2011 Mar; 5(3):2231-9. PubMed ID: 21319849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional analysis of the double-resonant 2D Raman mode in bilayer graphene.
    Herziger F; Calandra M; Gava P; May P; Lazzeri M; Mauri F; Maultzsch J
    Phys Rev Lett; 2014 Oct; 113(18):187401. PubMed ID: 25396395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of Raman spectroscopy in graphene and MoS2-type transition metal dichalcogenides.
    Pimenta MA; Del Corro E; Carvalho BR; Fantini C; Malard LM
    Acc Chem Res; 2015 Jan; 48(1):41-7. PubMed ID: 25490518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stokes and anti-Stokes Raman scattering in mono- and bilayer graphene.
    Cong X; Wu JB; Lin ML; Liu XL; Shi W; Venezuela P; Tan PH
    Nanoscale; 2018 Aug; 10(34):16138-16144. PubMed ID: 30117506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infrared Resonance Raman of Bilayer Graphene: Signatures of Massive Fermions and Band Structure on the 2D Peak.
    Graziotto L; Macheda F; Venanzi T; Marchese G; Sotgiu S; Ouaj T; Stellino E; Fasolato C; Postorino P; Metzelaars M; Kögerler P; Beschoten B; Calandra M; Ortolani M; Stampfer C; Mauri F; Baldassarre L
    Nano Lett; 2024 Feb; 24(6):1867-1873. PubMed ID: 38306119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance Raman enhancement by the intralayer and interlayer electron-phonon processes in twisted bilayer graphene.
    Moutinho MVO; Eliel GSN; Righi A; Gontijo RN; Paillet M; Michel T; Chiu PW; Venezuela P; Pimenta MA
    Sci Rep; 2021 Aug; 11(1):17206. PubMed ID: 34446790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong polarization dependence of double-resonant Raman intensities in graphene.
    Yoon D; Moon H; Son YW; Park BH; Kim JB; Lee Y; Cheong H
    Nano Lett; 2008 Dec; 8(12):4270-4. PubMed ID: 19368002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening.
    Ni ZH; Yu T; Lu YH; Wang YY; Feng YP; Shen ZX
    ACS Nano; 2008 Nov; 2(11):2301-5. PubMed ID: 19206396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2D Raman band splitting in graphene: Charge screening and lifting of the K-point Kohn anomaly.
    Wang X; Christopher JW; Swan AK
    Sci Rep; 2017 Oct; 7(1):13539. PubMed ID: 29051553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy.
    Huang M; Yan H; Chen C; Song D; Heinz TF; Hone J
    Proc Natl Acad Sci U S A; 2009 May; 106(18):7304-8. PubMed ID: 19380746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic carrier mobility of Dirac cones: the limitations of deformation potential theory.
    Li Z; Wang J; Liu Z
    J Chem Phys; 2014 Oct; 141(14):144107. PubMed ID: 25318715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Four-fold Raman enhancement of 2D band in twisted bilayer graphene: evidence for a doubly degenerate Dirac band and quantum interference.
    Wang Y; Su Z; Wu W; Nie S; Lu X; Wang H; McCarty K; Pei SS; Robles-Hernandez F; Hadjiev VG; Bao J
    Nanotechnology; 2014 Aug; 25(33):335201. PubMed ID: 25073903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opening a Band Gap in Biphenylene Monolayer via Strain: A First-Principles Study.
    Hou Y; Ren K; Wei Y; Yang D; Cui Z; Wang K
    Molecules; 2023 May; 28(10):. PubMed ID: 37241918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman spectroscopy of strained single-walled carbon nanotubes.
    Liu Z; Zhang J; Gao B
    Chem Commun (Camb); 2009 Dec; (45):6902-18. PubMed ID: 19904346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-Chip Rolling Design for Controllable Strain Engineering and Enhanced Photon-Phonon Interaction in Graphene.
    Wang L; Tian Z; Zhang B; Xu B; Wang T; Wang Y; Li S; Di Z; Mei Y
    Small; 2019 Jun; 15(23):e1805477. PubMed ID: 31026126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical Control over Phonon Polarization in Strained Graphene.
    Sonntag J; Reichardt S; Beschoten B; Stampfer C
    Nano Lett; 2021 Apr; 21(7):2898-2904. PubMed ID: 33797265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin-orbit splitting in single-layer MoS2 revealed by triply resonant Raman scattering.
    Sun L; Yan J; Zhan D; Liu L; Hu H; Li H; Tay BK; Kuo JL; Huang CC; Hewak DW; Lee PS; Shen ZX
    Phys Rev Lett; 2013 Sep; 111(12):126801. PubMed ID: 24093287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dirac point movement and topological phase transition in patterned graphene.
    Dvorak M; Wu Z
    Nanoscale; 2015 Feb; 7(8):3645-50. PubMed ID: 25636026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defect characterization in graphene and carbon nanotubes using Raman spectroscopy.
    Dresselhaus MS; Jorio A; Souza Filho AG; Saito R
    Philos Trans A Math Phys Eng Sci; 2010 Dec; 368(1932):5355-77. PubMed ID: 21041218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.