These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
571 related articles for article (PubMed ID: 21568704)
1. Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease. Heller J; Tudzynski P Annu Rev Phytopathol; 2011; 49():369-90. PubMed ID: 21568704 [TBL] [Abstract][Full Text] [Related]
2. NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation. Takemoto D; Tanaka A; Scott B Fungal Genet Biol; 2007 Nov; 44(11):1065-76. PubMed ID: 17560148 [TBL] [Abstract][Full Text] [Related]
3. A burst of plant NADPH oxidases. Marino D; Dunand C; Puppo A; Pauly N Trends Plant Sci; 2012 Jan; 17(1):9-15. PubMed ID: 22037416 [TBL] [Abstract][Full Text] [Related]
4. Molecular characterization of the NADPH oxidase complex in the ergot fungus Claviceps purpurea: CpNox2 and CpPls1 are important for a balanced host-pathogen interaction. Schürmann J; Buttermann D; Herrmann A; Giesbert S; Tudzynski P Mol Plant Microbe Interact; 2013 Oct; 26(10):1151-64. PubMed ID: 23777432 [TBL] [Abstract][Full Text] [Related]
5. Role of reactive oxygen species in fungal cellular differentiations. Scott B; Eaton CJ Curr Opin Microbiol; 2008 Dec; 11(6):488-93. PubMed ID: 18983937 [TBL] [Abstract][Full Text] [Related]
6. Production, Signaling, and Scavenging Mechanisms of Reactive Oxygen Species in Fruit-Pathogen Interactions. Wang Y; Ji D; Chen T; Li B; Zhang Z; Qin G; Tian S Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31248143 [TBL] [Abstract][Full Text] [Related]
7. Reactive oxygen species generation in fungal development and pathogenesis. Tudzynski P; Heller J; Siegmund U Curr Opin Microbiol; 2012 Dec; 15(6):653-9. PubMed ID: 23123514 [TBL] [Abstract][Full Text] [Related]
8. Respiratory burst oxidases: the engines of ROS signaling. Suzuki N; Miller G; Morales J; Shulaev V; Torres MA; Mittler R Curr Opin Plant Biol; 2011 Dec; 14(6):691-9. PubMed ID: 21862390 [TBL] [Abstract][Full Text] [Related]
9. NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Segmüller N; Kokkelink L; Giesbert S; Odinius D; van Kan J; Tudzynski P Mol Plant Microbe Interact; 2008 Jun; 21(6):808-19. PubMed ID: 18624644 [TBL] [Abstract][Full Text] [Related]
10. BcIqg1, a fungal IQGAP homolog, interacts with NADPH oxidase, MAP kinase and calcium signaling proteins and regulates virulence and development in Botrytis cinerea. Marschall R; Tudzynski P Mol Microbiol; 2016 Jul; 101(2):281-98. PubMed ID: 27062300 [TBL] [Abstract][Full Text] [Related]
11. Pathogenomics of fungal plant parasites: what have we learnt about pathogenesis? Schmidt SM; Panstruga R Curr Opin Plant Biol; 2011 Aug; 14(4):392-9. PubMed ID: 21458359 [TBL] [Abstract][Full Text] [Related]
12. Reactive oxygen species and development in microbial eukaryotes. Aguirre J; Ríos-Momberg M; Hewitt D; Hansberg W Trends Microbiol; 2005 Mar; 13(3):111-8. PubMed ID: 15737729 [TBL] [Abstract][Full Text] [Related]
13. How filamentous pathogens co-opt plants: the ins and outs of fungal effectors. de Jonge R; Bolton MD; Thomma BP Curr Opin Plant Biol; 2011 Aug; 14(4):400-6. PubMed ID: 21454120 [TBL] [Abstract][Full Text] [Related]
14. Activation of an AP1-like transcription factor of the maize pathogen Cochliobolus heterostrophus in response to oxidative stress and plant signals. Lev S; Hadar R; Amedeo P; Baker SE; Yoder OC; Horwitz BA Eukaryot Cell; 2005 Feb; 4(2):443-54. PubMed ID: 15701806 [TBL] [Abstract][Full Text] [Related]
15. Challenges and progress towards understanding the role of effectors in plant-fungal interactions. Rafiqi M; Ellis JG; Ludowici VA; Hardham AR; Dodds PN Curr Opin Plant Biol; 2012 Aug; 15(4):477-82. PubMed ID: 22658704 [TBL] [Abstract][Full Text] [Related]
16. Apoptosis pathways in fungal growth, development and ageing. Hamann A; Brust D; Osiewacz HD Trends Microbiol; 2008 Jun; 16(6):276-83. PubMed ID: 18440231 [TBL] [Abstract][Full Text] [Related]
17. Does botrytis cinerea Ignore H(2)O(2)-induced oxidative stress during infection? Characterization of botrytis activator protein 1. Temme N; Tudzynski P Mol Plant Microbe Interact; 2009 Aug; 22(8):987-98. PubMed ID: 19589074 [TBL] [Abstract][Full Text] [Related]
18. The Nox/Ferric reductase/Ferric reductase-like families of Eumycetes. Grissa I; Bidard F; Grognet P; Grossetete S; Silar P Fungal Biol; 2010 Sep; 114(9):766-77. PubMed ID: 20943186 [TBL] [Abstract][Full Text] [Related]
19. The oxidative stress response of the opportunistic fungal pathogen Candida glabrata. Briones-Martin-Del-Campo M; Orta-Zavalza E; Juarez-Cepeda J; Gutierrez-Escobedo G; Cañas-Villamar I; Castaño I; De Las Peñas A Rev Iberoam Micol; 2014; 31(1):67-71. PubMed ID: 24270068 [TBL] [Abstract][Full Text] [Related]
20. NADPH oxidase-derived reactive oxygen species: involvement in vascular physiology and pathology. Manea A Cell Tissue Res; 2010 Dec; 342(3):325-39. PubMed ID: 21052718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]