These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 21568857)

  • 1. Prediction of folding nuclei in tRNA molecules.
    Pereyaslavets LB; Baranov MV; Leonova EI; Galzitskaya OV
    Biochemistry (Mosc); 2011 Feb; 76(2):236-44. PubMed ID: 21568857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Formation of spatial structure of RNA molecules].
    Leonova EI; Baranov MV; Galzitskaia OV
    Mol Biol (Mosk); 2012; 46(1):37-51. PubMed ID: 22642100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure of yeast tRNA(Asp). A model for tRNA interacting with messenger RNA.
    Moras D; Dock AC; Dumas P; Westhof E; Romby P; Ebel JP; Giegé R
    J Biomol Struct Dyn; 1985 Dec; 3(3):479-93. PubMed ID: 3917033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring three-dimensional structures of the HIV-1 RNA/tRNALys3 initiation complex.
    Elgavish T; VanLoock MS; Harvey SC
    J Mol Biol; 1999 Jan; 285(2):449-53. PubMed ID: 9878419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of sequence dependent variations in secondary and tertiary structure of tRNA molecules.
    Bhattacharyya D; Bansal M
    J Biomol Struct Dyn; 1994 Jun; 11(6):1251-75. PubMed ID: 7946073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals.
    Westhof E; Dumas P; Moras D
    Acta Crystallogr A; 1988 Mar; 44 ( Pt 2)():112-23. PubMed ID: 3272146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of the anticodon domain of tRNA(fMet) to Escherichia coli methionyl-tRNA synthetase.
    Meinnel T; Mechulam Y; Blanquet S; Fayat G
    J Mol Biol; 1991 Jul; 220(2):205-8. PubMed ID: 1856854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient aminoacylation of tRNA(Lys,3) by human lysyl-tRNA synthetase is dependent on covalent continuity between the acceptor stem and the anticodon domain.
    Stello T; Hong M; Musier-Forsyth K
    Nucleic Acids Res; 1999 Dec; 27(24):4823-9. PubMed ID: 10572184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the conformation of human tRNA(3)(Lys) in solution by NMR.
    Puglisi EV; Puglisi JD
    FEBS Lett; 2007 Nov; 581(27):5307-14. PubMed ID: 17963705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the tertiary structure of yeast tRNA(Asp) and tRNA(Phe) in solution. Chemical modification study of the bases.
    Romby P; Moras D; Dumas P; Ebel JP; Giegé R
    J Mol Biol; 1987 May; 195(1):193-204. PubMed ID: 3309332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization of the anticodon stem-loop of tRNALys,3 by an A+-C base-pair and by pseudouridine.
    Durant PC; Davis DR
    J Mol Biol; 1999 Jan; 285(1):115-31. PubMed ID: 9878393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphoserine aminoacylation of tRNA bearing an unnatural base anticodon.
    Fukunaga R; Harada Y; Hirao I; Yokoyama S
    Biochem Biophys Res Commun; 2008 Aug; 372(3):480-5. PubMed ID: 18503748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three modified nucleosides present in the anticodon stem and loop influence the in vivo aa-tRNA selection in a tRNA-dependent manner.
    Li J; Esberg B; Curran JF; Björk GR
    J Mol Biol; 1997 Aug; 271(2):209-21. PubMed ID: 9268653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Watson-Crick base-pair-disrupting methyl group (m1A9) is sufficient for cloverleaf folding of human mitochondrial tRNALys.
    Helm M; Giegé R; Florentz C
    Biochemistry; 1999 Oct; 38(40):13338-46. PubMed ID: 10529209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. tRNA acceptor stem and anticodon bases form independent codes related to protein folding.
    Carter CW; Wolfenden R
    Proc Natl Acad Sci U S A; 2015 Jun; 112(24):7489-94. PubMed ID: 26034281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of solvated yeast tRNA(Asp).
    Auffinger P; Louise-May S; Westhof E
    Biophys J; 1999 Jan; 76(1 Pt 1):50-64. PubMed ID: 9876122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The crystal structure of HIV reverse-transcription primer tRNA(Lys,3) shows a canonical anticodon loop.
    Bénas P; Bec G; Keith G; Marquet R; Ehresmann C; Ehresmann B; Dumas P
    RNA; 2000 Oct; 6(10):1347-55. PubMed ID: 11073212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of human phenylalanyl-tRNA synthetase with specific tRNA according to thiophosphate footprinting.
    Vasil'eva IA; Semenova EA; Moor NA
    Biochemistry (Mosc); 2009 Feb; 74(2):175-85. PubMed ID: 19267673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of a methionine initiator tRNA into a tryptophan-inserting elongator tRNA in vivo.
    Pak M; Pallanck L; Schulman LH
    Biochemistry; 1992 Apr; 31(13):3303-9. PubMed ID: 1554714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution conformations of unmodified and A(37)N(6)-dimethylallyl modified anticodon stem-loops of Escherichia coli tRNA(Phe).
    Cabello-Villegas J; Winkler ME; Nikonowicz EP
    J Mol Biol; 2002 Jun; 319(5):1015-34. PubMed ID: 12079344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.