These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 21568873)

  • 1. Modeling amyloid fibril formation.
    Dovidchenko NV; Galzitskaya OV
    Biochemistry (Mosc); 2011 Mar; 76(3):366-73. PubMed ID: 21568873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling amyloid fibril formation kinetics: mechanisms of nucleation and growth.
    Gillam JE; MacPhee CE
    J Phys Condens Matter; 2013 Sep; 25(37):373101. PubMed ID: 23941964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secondary nucleation of monomers on fibril surface dominates α-synuclein aggregation and provides autocatalytic amyloid amplification.
    Gaspar R; Meisl G; Buell AK; Young L; Kaminski CF; Knowles TPJ; Sparr E; Linse S
    Q Rev Biophys; 2017 Jan; 50():e6. PubMed ID: 29233218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of amyloid-β fibril elongation.
    Gurry T; Stultz CM
    Biochemistry; 2014 Nov; 53(44):6981-91. PubMed ID: 25330398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directionality of growth and kinetics of branched fibril formation.
    Razbin M; Benetatos P; Mirabbaszadeh K
    J Chem Phys; 2020 Dec; 153(24):244101. PubMed ID: 33380088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of Mutant Huntingtin Exon-1 Fragments into Large Complex Fibrillar Structures Involves Nucleated Branching.
    Wagner AS; Politi AZ; Ast A; Bravo-Rodriguez K; Baum K; Buntru A; Strempel NU; Brusendorf L; Hänig C; Boeddrich A; Plassmann S; Klockmeier K; Ramirez-Anguita JM; Sanchez-Garcia E; Wolf J; Wanker EE
    J Mol Biol; 2018 Jun; 430(12):1725-1744. PubMed ID: 29601786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How to determine the size of folding nuclei of protofibrils from the concentration dependence of the rate and lag-time of aggregation. I. Modeling the amyloid protofibril formation.
    Dovidchenko NV; Finkelstein AV; Galzitskaya OV
    J Phys Chem B; 2014 Feb; 118(5):1189-97. PubMed ID: 24404849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competition between primary nucleation and autocatalysis in amyloid fibril self-assembly.
    Eden K; Morris R; Gillam J; MacPhee CE; Allen RJ
    Biophys J; 2015 Feb; 108(3):632-43. PubMed ID: 25650930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein Polymerization into Fibrils from the Viewpoint of Nucleation Theory.
    Kashchiev D
    Biophys J; 2015 Nov; 109(10):2126-36. PubMed ID: 26588571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finke-Watzky Two-Step Nucleation-Autocatalysis Model of S100A9 Amyloid Formation: Protein Misfolding as "Nucleation" Event.
    Iashchishyn IA; Sulskis D; Nguyen Ngoc M; Smirnovas V; Morozova-Roche LA
    ACS Chem Neurosci; 2017 Oct; 8(10):2152-2158. PubMed ID: 28759719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance Raman spectroscopic measurements delineate the structural changes that occur during tau fibril formation.
    Ramachandran G; Milán-Garcés EA; Udgaonkar JB; Puranik M
    Biochemistry; 2014 Oct; 53(41):6550-65. PubMed ID: 25284680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro oligomerization and fibrillogenesis of amyloid-beta peptides.
    Benseny-Cases N; Klementieva O; Cladera J
    Subcell Biochem; 2012; 65():53-74. PubMed ID: 23224999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secondary nucleation in amyloid formation.
    Törnquist M; Michaels TCT; Sanagavarapu K; Yang X; Meisl G; Cohen SIA; Knowles TPJ; Linse S
    Chem Commun (Camb); 2018 Aug; 54(63):8667-8684. PubMed ID: 29978862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for the existence of a secondary pathway for fibril growth during the aggregation of tau.
    Ramachandran G; Udgaonkar JB
    J Mol Biol; 2012 Aug; 421(2-3):296-314. PubMed ID: 22281439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of formation of amyloid protofibrils of barstar from soluble oligomers: evidence for multiple steps and lateral association coupled to conformational conversion.
    Kumar S; Mohanty SK; Udgaonkar JB
    J Mol Biol; 2007 Apr; 367(4):1186-204. PubMed ID: 17292913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lysozyme amyloidogenesis is accelerated by specific nicking and fragmentation but decelerated by intact protein binding and conversion.
    Mishra R; Sörgjerd K; Nyström S; Nordigården A; Yu YC; Hammarström P
    J Mol Biol; 2007 Feb; 366(3):1029-44. PubMed ID: 17196616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in Protein Concentration Dependence for Nucleation and Elongation in Light Chain Amyloid Formation.
    Blancas-Mejía LM; Misra P; Ramirez-Alvarado M
    Biochemistry; 2017 Feb; 56(5):757-766. PubMed ID: 28074646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amyloid fibril formation by the chain B subunit of monellin occurs by a nucleation-dependent polymerization mechanism.
    Sabareesan AT; Udgaonkar JB
    Biochemistry; 2014 Feb; 53(7):1206-17. PubMed ID: 24495141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining the pathway of worm-like amyloid fibril formation by the mouse prion protein by delineation of the productive and unproductive oligomerization reactions.
    Jain S; Udgaonkar JB
    Biochemistry; 2011 Feb; 50(7):1153-61. PubMed ID: 21214263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.