These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 21569291)

  • 1. Modulated contact frequencies at gene-rich loci support a statistical helix model for mammalian chromatin organization.
    Court F; Miro J; Braem C; Lelay-Taha MN; Brisebarre A; Atger F; Gostan T; Weber M; Cathala G; Forné T
    Genome Biol; 2011; 12(5):R42. PubMed ID: 21569291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct polymer physics principles govern chromatin dynamics in mouse and Drosophila topological domains.
    Ea V; Sexton T; Gostan T; Herviou L; Baudement MO; Zhang Y; Berlivet S; Le Lay-Taha MN; Cathala G; Lesne A; Victor JM; Fan Y; Cavalli G; Forné T
    BMC Genomics; 2015 Aug; 16(1):607. PubMed ID: 26271925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting Spatial Chromatin Organization by Chromosome Conformation Capture II: Genome-Wide Profiling by Hi-C.
    Vietri Rudan M; Hadjur S; Sexton T
    Methods Mol Biol; 2017; 1589():47-74. PubMed ID: 26900130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topological domains in mammalian genomes identified by analysis of chromatin interactions.
    Dixon JR; Selvaraj S; Yue F; Kim A; Li Y; Shen Y; Hu M; Liu JS; Ren B
    Nature; 2012 Apr; 485(7398):376-80. PubMed ID: 22495300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplexed chromosome conformation capture sequencing for rapid genome-scale high-resolution detection of long-range chromatin interactions.
    Stadhouders R; Kolovos P; Brouwer R; Zuin J; van den Heuvel A; Kockx C; Palstra RJ; Wendt KS; Grosveld F; van Ijcken W; Soler E
    Nat Protoc; 2013 Mar; 8(3):509-24. PubMed ID: 23411633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational approaches for inferring 3D conformations of chromatin from chromosome conformation capture data.
    Meluzzi D; Arya G
    Methods; 2020 Oct; 181-182():24-34. PubMed ID: 31470090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of High-Resolution 3D Chromatin Organization Using Circular Chromosome Conformation Capture (4C-seq).
    Matelot M; Noordermeer D
    Methods Mol Biol; 2016; 1480():223-41. PubMed ID: 27659989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatin Domains: The Unit of Chromosome Organization.
    Dixon JR; Gorkin DU; Ren B
    Mol Cell; 2016 Jun; 62(5):668-80. PubMed ID: 27259200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Analysis of Intra-chromosomal Contacts: The 3C-qPCR Method.
    Ea V; Court F; Forné T
    Methods Mol Biol; 2017; 1589():75-88. PubMed ID: 26025624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 4Cin: A computational pipeline for 3D genome modeling and virtual Hi-C analyses from 4C data.
    Irastorza-Azcarate I; Acemel RD; Tena JJ; Maeso I; Gómez-Skarmeta JL; Devos DP
    PLoS Comput Biol; 2018 Mar; 14(3):e1006030. PubMed ID: 29522512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping cis- and trans- chromatin interaction networks using chromosome conformation capture (3C).
    Miele A; Dekker J
    Methods Mol Biol; 2009; 464():105-21. PubMed ID: 18951182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hi-C: a method to study the three-dimensional architecture of genomes.
    van Berkum NL; Lieberman-Aiden E; Williams L; Imakaev M; Gnirke A; Mirny LA; Dekker J; Lander ES
    J Vis Exp; 2010 May; (39):. PubMed ID: 20461051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstructing spatial organizations of chromosomes through manifold learning.
    Zhu G; Deng W; Hu H; Ma R; Zhang S; Yang J; Peng J; Kaplan T; Zeng J
    Nucleic Acids Res; 2018 May; 46(8):e50. PubMed ID: 29408992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C).
    Simonis M; Klous P; Splinter E; Moshkin Y; Willemsen R; de Wit E; van Steensel B; de Laat W
    Nat Genet; 2006 Nov; 38(11):1348-54. PubMed ID: 17033623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution targeted 3C interrogation of cis-regulatory element organization at genome-wide scale.
    Downes DJ; Beagrie RA; Gosden ME; Telenius J; Carpenter SJ; Nussbaum L; De Ornellas S; Sergeant M; Eijsbouts CQ; Schwessinger R; Kerry J; Roberts N; Shivalingam A; El-Sagheer A; Oudelaar AM; Brown T; Buckle VJ; Davies JOJ; Hughes JR
    Nat Commun; 2021 Jan; 12(1):531. PubMed ID: 33483495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UMI-4C for quantitative and targeted chromosomal contact profiling.
    Schwartzman O; Mukamel Z; Oded-Elkayam N; Olivares-Chauvet P; Lubling Y; Landan G; Izraeli S; Tanay A
    Nat Methods; 2016 Aug; 13(8):685-91. PubMed ID: 27376768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Practical Analysis of Genome Contact Interaction Experiments.
    Carty MA; Elemento O
    Methods Mol Biol; 2016; 1418():177-89. PubMed ID: 27008015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data.
    Carty M; Zamparo L; Sahin M; González A; Pelossof R; Elemento O; Leslie CS
    Nat Commun; 2017 May; 8():15454. PubMed ID: 28513628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low Input Targeted Chromatin Capture (Low-T2C).
    Boltsis I; Nowosad K; Brouwer RWW; Tylzanowski P; van IJcken WFJ; Huylebroeck D; Grosveld F; Kolovos P
    Methods Mol Biol; 2021; 2351():165-179. PubMed ID: 34382189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.