These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 21569327)
1. Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing. Franssen SU; Shrestha RP; Bräutigam A; Bornberg-Bauer E; Weber AP BMC Genomics; 2011 May; 12():227. PubMed ID: 21569327 [TBL] [Abstract][Full Text] [Related]
2. Rapid transcriptome characterization and parsing of sequences in a non-model host-pathogen interaction; pea-Sclerotinia sclerotiorum. Zhuang X; McPhee KE; Coram TE; Peever TL; Chilvers MI BMC Genomics; 2012 Nov; 13():668. PubMed ID: 23181755 [TBL] [Abstract][Full Text] [Related]
3. De novo assembly and characterisation of the field pea transcriptome using RNA-Seq. Sudheesh S; Sawbridge TI; Cogan NO; Kennedy P; Forster JW; Kaur S BMC Genomics; 2015 Aug; 16(1):611. PubMed ID: 26275991 [TBL] [Abstract][Full Text] [Related]
4. Full-length de novo assembly of RNA-seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insights into root nodulation in this species. Alves-Carvalho S; Aubert G; Carrère S; Cruaud C; Brochot AL; Jacquin F; Klein A; Martin C; Boucherot K; Kreplak J; da Silva C; Moreau S; Gamas P; Wincker P; Gouzy J; Burstin J Plant J; 2015 Oct; 84(1):1-19. PubMed ID: 26296678 [TBL] [Abstract][Full Text] [Related]
5. De novo transcriptome assembly reveals high transcriptional complexity in Pisum sativum axillary buds and shows rapid changes in expression of diurnally regulated genes. Kerr SC; Gaiti F; Beveridge CA; Tanurdzic M BMC Genomics; 2017 Mar; 18(1):221. PubMed ID: 28253862 [TBL] [Abstract][Full Text] [Related]
6. High-Throughput RNA-Seq Data Analysis of the Single Nucleotide Polymorphisms (SNPs) and Zygomorphic Flower Development in Pea (Pisum sativum L.). Jiao K; Li X; Guo W; Su S; Luo D Int J Mol Sci; 2017 Dec; 18(12):. PubMed ID: 29261120 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome sequencing of field pea and faba bean for discovery and validation of SSR genetic markers. Kaur S; Pembleton LW; Cogan NO; Savin KW; Leonforte T; Paull J; Materne M; Forster JW BMC Genomics; 2012 Mar; 13():104. PubMed ID: 22433453 [TBL] [Abstract][Full Text] [Related]
8. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. Macas J; Neumann P; Navrátilová A BMC Genomics; 2007 Nov; 8():427. PubMed ID: 18031571 [TBL] [Abstract][Full Text] [Related]
9. Transcriptomic Insights into Mechanisms of Early Seed Maturation in the Garden Pea ( Malovichko YV; Shtark OY; Vasileva EN; Nizhnikov AA; Antonets KS Cells; 2020 Mar; 9(3):. PubMed ID: 32210065 [TBL] [Abstract][Full Text] [Related]
10. Gene-based SNP discovery and genetic mapping in pea. Sindhu A; Ramsay L; Sanderson LA; Stonehouse R; Li R; Condie J; Shunmugam AS; Liu Y; Jha AB; Diapari M; Burstin J; Aubert G; Tar'an B; Bett KE; Warkentin TD; Sharpe AG Theor Appl Genet; 2014 Oct; 127(10):2225-41. PubMed ID: 25119872 [TBL] [Abstract][Full Text] [Related]
11. Pea Marker Database (PMD) - A new online database combining known pea (Pisum sativum L.) gene-based markers. Kulaeva OA; Zhernakov AI; Afonin AM; Boikov SS; Sulima AS; Tikhonovich IA; Zhukov VA PLoS One; 2017; 12(10):e0186713. PubMed ID: 29073280 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome sequencing for high throughput SNP development and genetic mapping in Pea. Duarte J; Rivière N; Baranger A; Aubert G; Burstin J; Cornet L; Lavaud C; Lejeune-Hénaut I; Martinant JP; Pichon JP; Pilet-Nayel ML; Boutet G BMC Genomics; 2014 Feb; 15():126. PubMed ID: 24521263 [TBL] [Abstract][Full Text] [Related]
13. Critical assessment of assembly strategies for non-model species mRNA-Seq data and application of next-generation sequencing to the comparison of C(3) and C(4) species. Bräutigam A; Mullick T; Schliesky S; Weber AP J Exp Bot; 2011 May; 62(9):3093-102. PubMed ID: 21398430 [TBL] [Abstract][Full Text] [Related]
15. Transcriptional profiling of the pea shoot apical meristem reveals processes underlying its function and maintenance. Wong CE; Bhalla PL; Ottenhof H; Singh MB BMC Plant Biol; 2008 Jun; 8():73. PubMed ID: 18590528 [TBL] [Abstract][Full Text] [Related]
16. Combined de novo and genome guided assembly and annotation of the Pinus patula juvenile shoot transcriptome. Visser EA; Wegrzyn JL; Steenkmap ET; Myburg AA; Naidoo S BMC Genomics; 2015 Dec; 16():1057. PubMed ID: 26652261 [TBL] [Abstract][Full Text] [Related]
17. Yerba mate (Ilex paraguariensis, A. St.-Hil.) de novo transcriptome assembly based on tissue specific genomic expression profiles. Fay JV; Watkins CJ; Shrestha RK; Litwiñiuk SL; Talavera Stefani LN; Rojas CA; Argüelles CF; Ferreras JA; Caccamo M; Miretti MM BMC Genomics; 2018 Dec; 19(1):891. PubMed ID: 30526481 [TBL] [Abstract][Full Text] [Related]
18. Exploring the switchgrass transcriptome using second-generation sequencing technology. Wang Y; Zeng X; Iyer NJ; Bryant DW; Mockler TC; Mahalingam R PLoS One; 2012; 7(3):e34225. PubMed ID: 22479570 [TBL] [Abstract][Full Text] [Related]
19. High-Throughput Development of SSR Markers from Pea (Pisum sativum L.) Based on Next Generation Sequencing of a Purified Chinese Commercial Variety. Yang T; Fang L; Zhang X; Hu J; Bao S; Hao J; Li L; He Y; Jiang J; Wang F; Tian S; Zong X PLoS One; 2015; 10(10):e0139775. PubMed ID: 26440522 [TBL] [Abstract][Full Text] [Related]
20. Comparative transcriptomic analyses revealed divergences of two agriculturally important aphid species. Wang D; Liu Q; Jones HD; Bruce T; Xia L BMC Genomics; 2014 Nov; 15(1):1023. PubMed ID: 25424897 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]