BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 21569861)

  • 1. Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide.
    Lan EI; Liao JC
    Metab Eng; 2011 Jul; 13(4):353-63. PubMed ID: 21569861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light.
    Kusakabe T; Tatsuke T; Tsuruno K; Hirokawa Y; Atsumi S; Liao JC; Hanai T
    Metab Eng; 2013 Nov; 20():101-8. PubMed ID: 24076145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering a homobutanol fermentation pathway in Escherichia coli EG03.
    Garza E; Zhao J; Wang Y; Wang J; Iverson A; Manow R; Finan C; Zhou S
    J Ind Microbiol Biotechnol; 2012 Aug; 39(8):1101-7. PubMed ID: 22776992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective n-butanol production by Clostridium sp. MTButOH1365 during continuous synthesis gas fermentation due to expression of synthetic thiolase, 3-hydroxy butyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyraldehyde dehydrogenase, and NAD-dependent butanol dehydrogenase.
    Berzin V; Tyurin M; Kiriukhin M
    Appl Biochem Biotechnol; 2013 Feb; 169(3):950-9. PubMed ID: 23292245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures of trans-2-enoyl-CoA reductases from Clostridium acetobutylicum and Treponema denticola: insights into the substrate specificity and the catalytic mechanism.
    Hu K; Zhao M; Zhang T; Zha M; Zhong C; Jiang Y; Ding J
    Biochem J; 2013 Jan; 449(1):79-89. PubMed ID: 23050861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production.
    Yu M; Zhang Y; Tang IC; Yang ST
    Metab Eng; 2011 Jul; 13(4):373-82. PubMed ID: 21530675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis.
    Berezina OV; Zakharova NV; Brandt A; Yarotsky SV; Schwarz WH; Zverlov VV
    Appl Microbiol Biotechnol; 2010 Jun; 87(2):635-46. PubMed ID: 20195860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoautotrophic synthesis of butyrate by metabolically engineered cyanobacteria.
    Lai MJ; Lan EI
    Biotechnol Bioeng; 2019 Apr; 116(4):893-903. PubMed ID: 30552682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli.
    Inui M; Suda M; Kimura S; Yasuda K; Suzuki H; Toda H; Yamamoto S; Okino S; Suzuki N; Yukawa H
    Appl Microbiol Biotechnol; 2008 Jan; 77(6):1305-16. PubMed ID: 18060402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved
    Wen Z; Ledesma-Amaro R; Lin J; Jiang Y; Yang S
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30658972
    [No Abstract]   [Full Text] [Related]  

  • 11. Optimization of n-butanol synthesis in Lactobacillus brevis via the functional expression of thl, hbd, crt and ter.
    Li Q; Wu M; Wen Z; Jiang Y; Wang X; Zhao Y; Liu J; Yang J; Jiang Y; Yang S
    J Ind Microbiol Biotechnol; 2020 Dec; 47(12):1099-1108. PubMed ID: 33221994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic Engineering of
    Wen Z; Ledesma-Amaro R; Lu M; Jin M; Yang S
    ACS Synth Biol; 2020 Feb; 9(2):304-315. PubMed ID: 31940438
    [No Abstract]   [Full Text] [Related]  

  • 13. Metabolic engineering of Methylobacterium extorquens AM1 for 1-butanol production.
    Hu B; Lidstrom ME
    Biotechnol Biofuels; 2014; 7(1):156. PubMed ID: 25349627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterologous Expression of the Clostridium carboxidivorans CO Dehydrogenase Alone or Together with the Acetyl Coenzyme A Synthase Enables both Reduction of CO
    Carlson ED; Papoutsakis ET
    Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28625981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production: effects of CoA transferase.
    Yu L; Zhao J; Xu M; Dong J; Varghese S; Yu M; Tang IC; Yang ST
    Appl Microbiol Biotechnol; 2015 Jun; 99(11):4917-30. PubMed ID: 25851718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Clostridium cellulovorans for highly selective n-butanol production from cellulose in consolidated bioprocessing.
    Bao T; Hou W; Wu X; Lu L; Zhang X; Yang ST
    Biotechnol Bioeng; 2021 Jul; 118(7):2703-2718. PubMed ID: 33844271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations.
    Sillers R; Al-Hinai MA; Papoutsakis ET
    Biotechnol Bioeng; 2009 Jan; 102(1):38-49. PubMed ID: 18726959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of butanol production in Clostridium acetobutylicum through enhancement of NAD(P)H availability.
    Qi F; Thakker C; Zhu F; Pena M; San KY; Bennett GN
    J Ind Microbiol Biotechnol; 2018 Nov; 45(11):993-1002. PubMed ID: 30141107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alcohol Selectivity in a Synthetic Thermophilic n-Butanol Pathway Is Driven by Biocatalytic and Thermostability Characteristics of Constituent Enzymes.
    Loder AJ; Zeldes BM; Garrison GD; Lipscomb GL; Adams MW; Kelly RM
    Appl Environ Microbiol; 2015 Oct; 81(20):7187-200. PubMed ID: 26253677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria.
    Lan EI; Liao JC
    Proc Natl Acad Sci U S A; 2012 Apr; 109(16):6018-23. PubMed ID: 22474341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.