BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2157001)

  • 1. Modulation of mesoprefrontal dopamine neurons by central benzodiazepine receptors. I. Pharmacological characterization.
    Tam SY; Roth RH
    J Pharmacol Exp Ther; 1990 Mar; 252(3):989-96. PubMed ID: 2157001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ro 15-4513, like anxiogenic beta-carbolines, increases dopamine metabolism in the prefrontal cortex of the rat.
    Giorgi O; Corda MG; Biggio G
    Eur J Pharmacol; 1988 Oct; 156(1):71-5. PubMed ID: 3208840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The activation of mesoprefrontal dopamine neurons by FG 7142 is absent in rats treated chronically with diazepam.
    Ida Y; Roth RH
    Eur J Pharmacol; 1987 Jun; 137(2-3):185-90. PubMed ID: 3609140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacological studies on stress-induced increase in frontal cortical dopamine metabolism in the rat.
    Claustre Y; Rivy JP; Dennis T; Scatton B
    J Pharmacol Exp Ther; 1986 Aug; 238(2):693-700. PubMed ID: 2874216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The anxiogenic beta-carboline FG-7142 increases in vivo and in vitro tyrosine hydroxylation in the prefrontal cortex.
    Knorr AM; Deutch AY; Roth RH
    Brain Res; 1989 Aug; 495(2):355-61. PubMed ID: 2765936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic flurazepam treatment produces decreased efficacy of the benzodiazepine ligands and pentobarbital with gamma-aminobutyric acidA receptors in cortical neurons.
    Hu XJ; Ticku MK
    J Pharmacol Exp Ther; 1994 Aug; 270(2):485-90. PubMed ID: 8071841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preferential decrease in dopamine utilization in prefrontal cortex by zopiclone, diazepam and zolpidem in unstressed rats.
    Boireau A; Dubedat P; Laduron PM; Doble A; Blanchard JC
    J Pharm Pharmacol; 1990 Aug; 42(8):562-5. PubMed ID: 1981584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The anxiolytic beta-carboline ZK 93423 prevents the stress-induced increase in dopamine turnover in the prefrontal cortex.
    Giorgi O; Corda MG; Biggio G
    Eur J Pharmacol; 1987 Feb; 134(3):327-31. PubMed ID: 2883014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beta-carboline interactions at the BZ-GABA receptor chloride-ionophore complex in the rat cerebral cortex.
    Malatynska E; Knapp R; Ikeda M; Yamamura HI
    Brain Res Bull; 1989 May; 22(5):845-8. PubMed ID: 2548678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Psychological stress increases dopamine turnover selectively in mesoprefrontal dopamine neurons of rats: reversal by diazepam.
    Kaneyuki H; Yokoo H; Tsuda A; Yoshida M; Mizuki Y; Yamada M; Tanaka M
    Brain Res; 1991 Aug; 557(1-2):154-61. PubMed ID: 1747750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesocortical dopamine neurons: high basal firing frequency predicts tyrosine dependence of dopamine synthesis.
    Tam SY; Elsworth JD; Bradberry CW; Roth RH
    J Neural Transm Gen Sect; 1990; 81(2):97-110. PubMed ID: 2363911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benzodiazepine agonist and inverse agonist actions on GABAA receptor-operated chloride channels. II. Chronic effects of ethanol.
    Buck KJ; Harris RA
    J Pharmacol Exp Ther; 1990 May; 253(2):713-9. PubMed ID: 2160008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the prefrontal cortical dopamine release by GABAA and GABAB receptor agonists and antagonists.
    Santiago M; Machado A; Cano J
    Brain Res; 1993 Dec; 630(1-2):28-31. PubMed ID: 7509709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential effects of forced locomotion, tail-pinch, immobilization, and methyl-beta-carboline carboxylate on extracellular 3,4-dihydroxyphenylacetic acid levels in the rat striatum, nucleus accumbens, and prefrontal cortex: an in vivo voltammetric study.
    Bertolucci-D'Angio M; Serrano A; Scatton B
    J Neurochem; 1990 Oct; 55(4):1208-15. PubMed ID: 2398355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benzodiazepine and beta-carboline interactions with GABAA receptor-gated chloride channels in mammalian cultured spinal cord neurons.
    Mehta AK; Ticku MK
    J Pharmacol Exp Ther; 1989 May; 249(2):418-23. PubMed ID: 2542529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress selectively increases fos protein in dopamine neurons innervating the prefrontal cortex.
    Deutch AY; Lee MC; Gillham MH; Cameron DA; Goldstein M; Iadarola MJ
    Cereb Cortex; 1991; 1(4):273-92. PubMed ID: 1668366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Augmentation of GABAA receptor function by chronic exposure to GABA-neutral and GABA-negative benzodiazepine ligands in cultured cortical neurons.
    Miller LG; Heller J; Lumpkin M; Weill CL; Greenblatt DJ; Shader RI
    Biochem Pharmacol; 1990 Sep; 40(6):1337-44. PubMed ID: 2169744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of substantia nigra pars reticulata neurons to benzodiazepine ligands after acute and prolonged diazepam exposure. I. Modulation of gamma-aminobutyric acid sensitivity.
    Wilson MA; Gallager DW
    J Pharmacol Exp Ther; 1989 Feb; 248(2):879-85. PubMed ID: 2537420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic benzodiazepine agonist treatment produces functional uncoupling of the gamma-aminobutyric acid-benzodiazepine receptor ionophore complex in cortical neurons.
    Hu XJ; Ticku MK
    Mol Pharmacol; 1994 Apr; 45(4):618-25. PubMed ID: 8183240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Ro15-4513 and other benzodiazepine receptor inverse agonists on alcohol-induced intoxication in the rat.
    Suzdak PD; Paul SM; Crawley JN
    J Pharmacol Exp Ther; 1988 Jun; 245(3):880-6. PubMed ID: 2455039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.