These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 215701)

  • 21. Events at the cardiac sarcolemma: localization and movement of contractile-dependent calcium.
    Langer GA
    Fed Proc; 1976 May; 35(6):1274-8. PubMed ID: 770200
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of PKA treatment on the Ca2+ activation of force generation by trout cardiac muscle.
    Gillis TE; Klaiman JM
    J Exp Biol; 2011 Jun; 214(Pt 12):1989-96. PubMed ID: 21613514
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of cyclic GMP hydrolysis with zaprinast reduces basal and cyclic AMP-elevated L-type calcium current in guinea-pig ventricular myocytes.
    Ziolo MT; Lewandowski SJ; Smith JM; Romano FD; Wahler GM
    Br J Pharmacol; 2003 Mar; 138(5):986-94. PubMed ID: 12642401
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dibutyryl cyclic AMP and adrenaline increase contractile force and 45 Ca uptake in mammalian cardiac muscle.
    Meinertz T; Nawrath H; Scholz H
    Naunyn Schmiedebergs Arch Pharmacol; 1973; 277(1):107-12. PubMed ID: 4350467
    [No Abstract]   [Full Text] [Related]  

  • 25. Calcium-dependent activation of cardiac myofibrils. The mechanisms that modulate myofibrillar ATPase and tension and their significance for heart function.
    Rupp H
    Adv Myocardiol; 1982; 3():455-66. PubMed ID: 6302787
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potent stimulation of myofilament force and adenosine triphosphatase activity of canine cardiac muscle through a direct enhancement of troponin C Ca++ binding by MCI-154, a novel cardiotonic agent.
    Kitada Y; Kobayashi M; Narimatsu A; Ohizumi Y
    J Pharmacol Exp Ther; 1989 Jul; 250(1):272-7. PubMed ID: 2545860
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cyclic GMP modulates store-operated calcium entry inducing phosphatidylserine translocation at the surface of megakaryocytic cells.
    Dervaux T; Porro C; Kunzelmann C; Freyssinet JM; Martínez MC
    Biochimie; 2006 Sep; 88(9):1175-82. PubMed ID: 16690196
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biochemical changes accompanying enhanced cardiac contractility by ionophore A23187.
    Murray JJ; Reed PW; Dobson JG
    Am J Physiol; 1985 Dec; 249(6 Pt 2):H1204-10. PubMed ID: 3000197
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional characterization of two distinct Mg(2+) extrusion mechanisms in cardiac sarcolemmal vesicles.
    Cefaratti C; Romani AM
    Mol Cell Biochem; 2007 Sep; 303(1-2):63-72. PubMed ID: 17415622
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Membrane control of cardiac contractility.
    McClellan GB; Winegrad S
    Nature; 1977 Jul; 268(5617):261-3. PubMed ID: 407478
    [No Abstract]   [Full Text] [Related]  

  • 31. cGMP-phosphodiesterase antagonists inhibit Ca2+-influx in Dictyostelium discoideum and bovine cyclic-nucleotide-gated-channel.
    Lusche DF; Kaneko H; Malchow D
    Eur J Pharmacol; 2005 Apr; 513(1-2):9-20. PubMed ID: 15878705
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Some characteristics of Ca2+- regulated force production in EGTA-treated muscles from rat heart.
    Kentish JC; Jewell BR
    J Gen Physiol; 1984 Jul; 84(1):83-99. PubMed ID: 6431051
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Intracellular signal systems in the epithelium- and endothelium-dependent relaxation of smooth muscles].
    Kapilevich LV; Kovalev IV; Baskakov MB; Medvedev MA
    Usp Fiziol Nauk; 2001; 32(2):88-98. PubMed ID: 11548593
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of cardiac contractile proteins by phosphorylation.
    Winegrad S; McClellan G; Horowits R; Tucker M; Lin LE; Weisberg A
    Fed Proc; 1983 Jan; 42(1):39-44. PubMed ID: 6293881
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contractile responses to selective phosphodiesterase inhibitors following chronic beta-adrenoreceptor activation.
    Osadchii OE; Woodiwiss AJ; Norton GR
    Pflugers Arch; 2006 May; 452(2):155-63. PubMed ID: 16369769
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of sarcolemmal changes in cardiac pathophysiology.
    Dhalla NS; Tomlinson CW; Singh JN; Lee SL; McNamara DB; Harrow JA; Yates JC
    Recent Adv Stud Cardiac Struct Metab; 1976; 9():377-94. PubMed ID: 130663
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of phospholamban in cyclic GMP mediated signaling in cardiac myocytes.
    Zhang Q; Scholz PM; Pilzak A; Su J; Weiss HR
    Cell Physiol Biochem; 2007; 20(1-4):157-66. PubMed ID: 17595525
    [TBL] [Abstract][Full Text] [Related]  

  • 38. S100A1: a regulator of myocardial contractility.
    Most P; Bernotat J; Ehlermann P; Pleger ST; Reppel M; Börries M; Niroomand F; Pieske B; Janssen PM; Eschenhagen T; Karczewski P; Smith GL; Koch WJ; Katus HA; Remppis A
    Proc Natl Acad Sci U S A; 2001 Nov; 98(24):13889-94. PubMed ID: 11717446
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activation of soluble guanylyl cyclase by YC-1 in aortic smooth muscle but not in ventricular myocardium from rat.
    Wegener JW; Gath I; Förstermann U; Nawrath H
    Br J Pharmacol; 1997 Dec; 122(7):1523-9. PubMed ID: 9421305
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of cyclic AMP in the modulation of cardiac contractility.
    Entman ML
    Adv Cyclic Nucleotide Res; 1974; 4(0):163-93. PubMed ID: 4369353
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.