These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 21571089)

  • 1. Molecular and comparative analyses of type IV antifreeze proteins (AFPIVs) from two Antarctic fishes, Pleuragramma antarcticum and Notothenia coriiceps.
    Lee JK; Kim YJ; Park KS; Shin SC; Kim HJ; Song YH; Park H
    Comp Biochem Physiol B Biochem Mol Biol; 2011 Aug; 159(4):197-205. PubMed ID: 21571089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive evolution of hepcidin genes in antarctic notothenioid fishes.
    Xu Q; Cheng CH; Hu P; Ye H; Chen Z; Cao L; Chen L; Shen Y; Chen L
    Mol Biol Evol; 2008 Jun; 25(6):1099-112. PubMed ID: 18310660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional antifreeze glycoprotein genes in temperate-water New Zealand nototheniid fish infer an Antarctic evolutionary origin.
    Cheng CH; Chen L; Near TJ; Jin Y
    Mol Biol Evol; 2003 Nov; 20(11):1897-908. PubMed ID: 12885956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete mitochondrial genome of the Antarctic silverfish, Pleuragramma antarcticum (Perciformes, Nototheniidae).
    Lee J; Lee H; Lee J; Choi J; Park H
    Mitochondrial DNA; 2015; 26(6):885-6. PubMed ID: 24409863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene amplification and cold adaptation of pepsin in Antarctic fish. A possible strategy for food digestion at low temperature.
    Carginale V; Trinchella F; Capasso C; Scudiero R; Parisi E
    Gene; 2004 Jul; 336(2):195-205. PubMed ID: 15246531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A re-evaluation of the role of type IV antifreeze protein.
    Gauthier SY; Scotter AJ; Lin FH; Baardsnes J; Fletcher GL; Davies PL
    Cryobiology; 2008 Dec; 57(3):292-6. PubMed ID: 18938150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Antifreeze glycoproteins in fishes: structure, mode of action and possible applications].
    Wöhrmann A
    Tierarztl Prax; 1996 Feb; 24(1):1-9. PubMed ID: 8720947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and expression analyses of anti-apoptotic Bcl-2-like genes NR-13, Mcl-1, Bcl-X1, and Bcl-X2 in Atlantic cod (Gadus morhua).
    Feng CY; Rise ML
    Mol Immunol; 2010 Jan; 47(4):763-84. PubMed ID: 19923001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New insights into evolution of IgT genes coming from Antarctic teleosts.
    Giacomelli S; Buonocore F; Albanese F; Scapigliati G; Gerdol M; Oreste U; Coscia MR
    Mar Genomics; 2015 Dec; 24 Pt 1():55-68. PubMed ID: 26122835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning and localization of the luteinizing hormone beta subunit and glycoprotein hormone alpha subunit from Japanese anchovy Engraulis japonicus.
    Ohkubo M; Katayama S; Shimizu A
    J Fish Biol; 2010 Aug; 77(2):372-87. PubMed ID: 20646162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and comprehensive analysis of the miiuy croaker TLR2 reveals a direct evidence for intron insert and loss.
    Xu T; Meng F; Zhu Z; Wang R
    Fish Shellfish Immunol; 2013 Jan; 34(1):119-28. PubMed ID: 23069786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epithelial dominant expression of antifreeze proteins in cunner suggests recent entry into a high freeze-risk ecozone.
    Hobbs RS; Fletcher GL
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Jan; 164(1):111-8. PubMed ID: 23085291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Positive Darwinian selection operating on the immunoglobulin heavy chain of Antarctic fishes.
    Ota T; Nguyen TA; Huang E; Detrich HW; Amemiya CT
    J Exp Zool B Mol Dev Evol; 2003 Feb; 295(1):45-58. PubMed ID: 12548542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resurrecting prehistoric parvalbumins to explore the evolution of thermal compensation in extant Antarctic fish parvalbumins.
    Whittington AC; Moerland TS
    J Exp Biol; 2012 Sep; 215(Pt 18):3281-92. PubMed ID: 22693024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metallothionein-2 gene from the mandarin fish Siniperca chuatsi: cDNA cloning, tissue expression, and immunohistochemical localization.
    Gao D; Wang GT; Chen XT; Nie P
    Comp Biochem Physiol C Toxicol Pharmacol; 2009 Jan; 149(1):18-25. PubMed ID: 18582600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compound ice-binding site of an antifreeze protein revealed by mutagenesis and fluorescent tagging.
    Garnham CP; Natarajan A; Middleton AJ; Kuiper MJ; Braslavsky I; Davies PL
    Biochemistry; 2010 Oct; 49(42):9063-71. PubMed ID: 20853841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ND6 gene "lost" and found: evolution of mitochondrial gene rearrangement in Antarctic notothenioids.
    Zhuang X; Cheng CH
    Mol Biol Evol; 2010 Jun; 27(6):1391-403. PubMed ID: 20106908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular and functional characterization of a novel stefin analogue in large yellow croaker (Pseudosciaena crocea).
    Li S; Yang Z; Ao J; Chen X
    Dev Comp Immunol; 2009 Dec; 33(12):1268-77. PubMed ID: 19651153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and expression of genes involved in transport and storage of iron in red-blooded and hemoglobin-less antarctic notothenioids.
    Scudiero R; Trinchella F; Riggio M; Parisi E
    Gene; 2007 Aug; 397(1-2):1-11. PubMed ID: 17570620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acid sequence of a new type of antifreeze protein, from the longhorn sculpin Myoxocephalus octodecimspinosis.
    Deng G; Andrews DW; Laursen RA
    FEBS Lett; 1997 Jan; 402(1):17-20. PubMed ID: 9013849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.