These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 21571292)
1. On the predictions and limitations of the Becker-Döring model for reaction kinetics in micellar surfactant solutions. Griffiths IM; Bain CD; Breward CJ; Colegate DM; Howell PD; Waters SL J Colloid Interface Sci; 2011 Aug; 360(2):662-71. PubMed ID: 21571292 [TBL] [Abstract][Full Text] [Related]
2. Micellization and relaxation in solution with spherical micelles via the discrete Becker-Döring equations at different total surfactant concentrations. Babintsev I; Adzhemyan L; Shchekin A J Chem Phys; 2012 Jul; 137(4):044902. PubMed ID: 22852650 [TBL] [Abstract][Full Text] [Related]
3. Kinetics of micellisation and relaxation of cylindrical micelles described by the difference Becker-Döring equation. Babintsev IA; Adzhemyan LTs; Shchekin AK Soft Matter; 2014 Apr; 10(15):2619-31. PubMed ID: 24647594 [TBL] [Abstract][Full Text] [Related]
4. Mass transport in micellar surfactant solutions: 1. Relaxation of micelle concentration, aggregation number and polydispersity. Danov KD; Kralchevsky PA; Denkov ND; Ananthapadmanabhan KP; Lips A Adv Colloid Interface Sci; 2006 Jan; 119(1):1-16. PubMed ID: 16303116 [TBL] [Abstract][Full Text] [Related]
5. Multi-scale times and modes of fast and slow relaxation in solutions with coexisting spherical and cylindrical micelles according to the difference Becker-Döring kinetic equations. Babintsev IA; Adzhemyan LTs; Shchekin AK J Chem Phys; 2014 Aug; 141(6):064901. PubMed ID: 25134593 [TBL] [Abstract][Full Text] [Related]
6. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
7. Full-time kinetics of self-assembly and disassembly in micellar solution via the generalized Smoluchowski equation with fusion and fission of surfactant aggregates. Shchekin AK; Babintsev IA; Adzhemyan LT J Chem Phys; 2016 Nov; 145(17):174105. PubMed ID: 27825237 [TBL] [Abstract][Full Text] [Related]
8. A multiscale model for kinetics of formation and disintegration of spherical micelles. Mohan G; Kopelevich DI J Chem Phys; 2008 Jan; 128(4):044905. PubMed ID: 18247998 [TBL] [Abstract][Full Text] [Related]
9. Aggregation work at polydisperse micellization: ideal solution and "dressed micelle" models comparing to molecular dynamics simulations. Burov SV; Shchekin AK J Chem Phys; 2010 Dec; 133(24):244109. PubMed ID: 21197978 [TBL] [Abstract][Full Text] [Related]
10. Mass transport in micellar surfactant solutions: 2. Theoretical modeling of adsorption at a quiescent interface. Danov KD; Kralchevsky PA; Denkov ND; Ananthapadmanabhan KP; Lips A Adv Colloid Interface Sci; 2006 Jan; 119(1):17-33. PubMed ID: 16309620 [TBL] [Abstract][Full Text] [Related]
11. Molecular thermodynamics for micellar branching in solutions of ionic surfactants. Andreev VA; Victorov AI Langmuir; 2006 Sep; 22(20):8298-310. PubMed ID: 16981741 [TBL] [Abstract][Full Text] [Related]
12. Boltzmann distributions and slow relaxation in systems with spherical and cylindrical micelles. Kuni FM; Shchekin AK; Rusanov AI; Grinin AP Langmuir; 2006 Feb; 22(4):1534-43. PubMed ID: 16460071 [TBL] [Abstract][Full Text] [Related]
13. A Lifshitz-Slyozov type model for adipocyte size dynamics: limit from Becker-Döring system and numerical simulation. Meyer L; Ribot M; Yvinec R J Math Biol; 2024 Jan; 88(2):16. PubMed ID: 38231273 [TBL] [Abstract][Full Text] [Related]
14. A mathematical model of crystallization in an emulsion. Feltham DL; Garside J J Chem Phys; 2005 May; 122(17):174910. PubMed ID: 15910072 [TBL] [Abstract][Full Text] [Related]
15. Complementary use of simulations and molecular-thermodynamic theory to model micellization. Stephenson BC; Beers K; Blankschtein D Langmuir; 2006 Feb; 22(4):1500-13. PubMed ID: 16460068 [TBL] [Abstract][Full Text] [Related]
16. Quantifying the hydrophobic effect. 1. A computer simulation-molecular-thermodynamic model for the self-assembly of hydrophobic and amphiphilic solutes in aqueous solution. Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D J Phys Chem B; 2007 Feb; 111(5):1025-44. PubMed ID: 17266257 [TBL] [Abstract][Full Text] [Related]
17. Kinetics of surfactant micellization: a free energy approach. Hadgiivanova R; Diamant H; Andelman D J Phys Chem B; 2011 Jun; 115(22):7268-80. PubMed ID: 21158411 [TBL] [Abstract][Full Text] [Related]
18. Prediction of conformational characteristics and micellar solution properties of fluorocarbon surfactants. Srinivasan V; Blankschtein D Langmuir; 2005 Feb; 21(4):1647-60. PubMed ID: 15697320 [TBL] [Abstract][Full Text] [Related]
19. Silica nanoparticle formation in the TPAOH-TEOS-H2O system: a population balance model. Provis JL; Vlachos DG J Phys Chem B; 2006 Feb; 110(7):3098-108. PubMed ID: 16494315 [TBL] [Abstract][Full Text] [Related]
20. Theory and Experiment on the Measurement of Kinetic Rate Constants for Surfactant Exchange at an Air/Water Interface. Pan R; Green J; Maldarelli C J Colloid Interface Sci; 1998 Sep; 205(2):213-230. PubMed ID: 9735185 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]